Even [a,b]-factors in graphs
Mekkia Kouider ; Preben Dahl Vestergaard
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 431-441 / Harvested from The Polish Digital Mathematics Library

Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270159
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1242,
     author = {Mekkia Kouider and Preben Dahl Vestergaard},
     title = {Even [a,b]-factors in graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {431-441},
     zbl = {1063.05109},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1242}
}
Mekkia Kouider; Preben Dahl Vestergaard. Even [a,b]-factors in graphs. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 431-441. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1242/

[000] [1] J. Akiyama and M. Kano, Factors and factorizations of graphs - a survey, J. Graph Theory 9 (1985) 1-42, doi: 10.1002/jgt.3190090103. | Zbl 0587.05048

[001] [2] A. Amahashi, On factors with all degrees odd, Graphs and Combin. 1 (1985) 111-114, doi: 10.1007/BF02582935. | Zbl 0573.05044

[002] [3] Mao-Cheng Cai, On some factor theorems of graphs, Discrete Math. 98 (1991) 223-229, doi: 10.1016/0012-365X(91)90378-F.

[003] [4] G. Chartrand and O.R. Oellermann, Applied and Algorithmic Graph Theory (McGraw-Hill, Inc., 1993).

[004] [5] Y. Cui and M. Kano, Some results on odd factors of graphs, J. Graph Theory 12 (1988) 327-333, doi: 10.1002/jgt.3190120305. | Zbl 0661.05049

[005] [6] M. Kano, [a,b] -factorization of a graph, J. Graph Theory 9 (1985) 129-146, doi: 10.1002/jgt.3190090111.

[006] [7] M. Kano and A. Saito, [a,b] -factors of a graph, Discrete Math. 47 (1983) 113-116, doi: 10.1016/0012-365X(83)90077-8.

[007] [8] M. Kano, A sufficient condition for a graph to have [a,b] -factors, Graphs Combin. 6 (1990) 245-251, doi: 10.1007/BF01787576. | Zbl 0746.05051

[008] [9] M. Kouider and M. Maheo, Connected (a,b)-factors in graphs, 1998. Research report no. 1151, LRI, (Paris Sud, Centre d'Orsay). Accepted for publication in Combinatorica.

[009] [10] M. Kouider and M. Maheo, 2 edge-connected [2,k] -factors in graphs, JCMCC 35 (2000) 75-89.

[010] [11] M. Kouider and P.D. Vestergaard, On even [2,b] -factors in graphs, Australasian J. Combin. 27 (2003) 139-147. | Zbl 1026.05092

[011] [12] Y. Li and M. Cai, A degree condition for a graph to have [a,b] -factors, J. Graph Theory 27 (1998) 1-6, doi: 10.1002/(SICI)1097-0118(199801)27:1<1::AID-JGT1>3.0.CO;2-U | Zbl 0891.05057

[012] [13] L. Lovász, Subgraphs with prescribed valencies, J. Comb. Theory 8 (1970) 391-416, doi: 10.1016/S0021-9800(70)80033-3. | Zbl 0198.29201

[013] [14] L. Lovász, The factorization of graphs II, Acta Math. Acad. Sci. Hungar. 23 (1972) 223-246, doi: 10.1007/BF01889919. | Zbl 0247.05155

[014] [15] J. Topp and P.D. Vestergaard, Odd factors of a graph, Graphs and Combin. 9 (1993) 371-381, doi: 10.1007/BF02988324. | Zbl 0795.05115