Let α ∈ (0,1) and let ) be a graph. According to Dunbar, Hoffman, Laskar and Markus [3] a set is called an α-dominating set of G, if for all . We prove a series of upper bounds on the α-domination number of a graph G defined as the minimum cardinality of an α-dominating set of G.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1241, author = {Franz Dahme and Dieter Rautenbach and Lutz Volkmann}, title = {Some remarks on $\alpha$-domination}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {423-430}, zbl = {1068.05051}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1241} }
Franz Dahme; Dieter Rautenbach; Lutz Volkmann. Some remarks on α-domination. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 423-430. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1241/
[000] [1] N. Alon and J. Spencer, The probabilistic method, 2nd ed., (Wiley-Interscience Series in Discrete Math. and Optimization, 2000), doi: 10.1002/0471722154. | Zbl 0996.05001
[001] [2] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat. 23(1952) 493-507, doi: 10.1214/aoms/1177729330. | Zbl 0048.11804
[002] [3] J.E. Dunbar, D.G. Hoffman, R.C. Laskar and L.R. Markus, α-domination, Discrete Math. 211 (2000) 11-26, doi: 10.1016/S0012-365X(99)00131-4.
[003] [4] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985) 287-293, doi: 10.1007/BF01848079. | Zbl 0602.05043
[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002
[005] [6] F. Dahme, D. Rautenbach and L. Volkmann, α-domination perfect trees, manuscript (2002).
[006] [7] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI, 1962).
[007] [8] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982) 23-32, doi: 10.1002/jgt.3190060104. | Zbl 0489.05049
[008] [9] D.R. Woodall, Improper colourings of graphs, Pitman Res. Notes Math. Ser. 218 (1988) 45-63.