On the structure of plane graphs of minimum face size 5
Tomás Madaras
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 403-411 / Harvested from The Polish Digital Mathematics Library

A subgraph of a plane graph is light if the sum of the degrees of the vertices of the subgraph in the graph is small. It is known that a plane graph of minimum face size 5 contains light paths and a light pentagon. In this paper we show that every plane graph of minimum face size 5 contains also a light star K1,3 and we present a structural result concerning the existence of a pair of adjacent faces with degree-bounded vertices.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270681
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1239,
     author = {Tom\'as Madaras},
     title = {On the structure of plane graphs of minimum face size 5},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {403-411},
     zbl = {1063.05038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1239}
}
Tomás Madaras. On the structure of plane graphs of minimum face size 5. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 403-411. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1239/

[000] [1] H. Enomoto and K. Ota, Connected Subgraphs with Small Degree Sums in 3-Connected Planar Graphs, J. Graph Theory 30 (1999) 191-203, doi: 10.1002/(SICI)1097-0118(199903)30:3<191::AID-JGT4>3.0.CO;2-X | Zbl 0916.05020

[001] [2] I. Fabrici, On vertex-degree restricted subgraphs in polyhedral graphs, Discrete Math. 256 (2002) 105-114, doi: 10.1016/S0012-365X(01)00368-5. | Zbl 1007.05063

[002] [3] I. Fabrici, J. Harant and S. Jendrol', Paths of low weight in planar graphs, submitted. | Zbl 1155.05010

[003] [4] I. Fabrici, E. Hexel, S. Jendrol' and H. Walther, On vertex-degree restricted paths in polyhedral graphs, Discrete Math. 212 (2000) 61-73, doi: 10.1016/S0012-365X(99)00209-5. | Zbl 0946.05047

[004] [5] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combin. 13 (1997) 245-250. | Zbl 0891.05025

[005] [6] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90, doi: 10.1016/S0012-365X(98)00095-8. | Zbl 0956.05059

[006] [7] J. Harant, S. Jendrol' and M. Tkáč, On 3-connected plane graphs without triangular faces, J. Combin. Theory (B) 77 (1999) 150-161, doi: 10.1006/jctb.1999.1918. | Zbl 1027.05030

[007] [8] S. Jendrol', T. Madaras, R. Soták and Z. Tuza, On light cycles in plane triangulations, Discrete Math. 197/198 (1999) 453-467. | Zbl 0936.05065

[008] [9] S. Jendrol' and P. Owens, On light graphs in 3-connected plane graphs without triangular or quadrangular faces, Graphs and Combin. 17 (2001) 659-680, doi: 10.1007/s003730170007. | Zbl 0988.05031

[009] [10] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Cas. SAV (Math. Slovaca) 5 (1955) 111-113.

[010] [11] H. Lebesgue, Quelques consequences simples de la formule d'Euler, J. Math. Pures Appl. 19 (1940) 19-43. | Zbl 0024.28701

[011] [12] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968. | Zbl 35.0511.01