Cyclic decompositions of complete graphs into spanning trees
Dalibor Froncek
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 345-353 / Harvested from The Polish Digital Mathematics Library

We examine decompositions of complete graphs with an even number of vertices, K2n, into n isomorphic spanning trees. While methods of such decompositions into symmetric trees have been known, we develop here a more general method based on a new type of vertex labelling, called flexible q-labelling. This labelling is a generalization of labellings introduced by Rosa and Eldergill.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270544
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1235,
     author = {Dalibor Froncek},
     title = {Cyclic decompositions of complete graphs into spanning trees},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {345-353},
     zbl = {1060.05080},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1235}
}
Dalibor Froncek. Cyclic decompositions of complete graphs into spanning trees. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 345-353. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1235/

[000] [1] J. Bosák, Decompositions of Graphs (Kluwer, Dordrecht, 1990). | Zbl 0701.05042

[001] [2] P. Eldergill, Decompositions of the complete graph with an even number of vertices (M.Sc. thesis, McMaster University Hamilton, 1997).

[002] [3] D. Froncek and M. Kubesa, Factorizations of complete graphs into spanning trees, Congressus Numerantium 154 (2002) 125-134. | Zbl 1021.05083

[003] [4] J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics DS6 (2001). | Zbl 0953.05067

[004] [5] G. Ringel, Problem 25, in: Theory of Graphs and its Applications, (Proc. Symp. Smolenice 1963) ed., M. Fiedler (Academia, Prague, 1964) 162.

[005] [6] A. Rosa, Cyclic decompositions of complete graphs (Ph.D. thesis, Slovak Academy of Science, Bratislava, 1965).

[006] [7] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Intl. Symp. Rome 1966), Gordon and Breach, Dunod, Paris (1967) 349-355.