Graphs with small additive stretch number
Dieter Rautenbach
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 291-301 / Harvested from The Polish Digital Mathematics Library

The additive stretch number sadd(G) of a graph G is the maximum difference of the lengths of a longest induced path and a shortest induced path between two vertices of G that lie in the same component of G.We prove some properties of minimal forbidden configurations for the induced-hereditary classes of graphs G with sadd(G)k for some k ∈ N₀ = 0,1,2,.... Furthermore, we derive characterizations of these classes for k = 1 and k = 2.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270368
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1232,
     author = {Dieter Rautenbach},
     title = {Graphs with small additive stretch number},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {291-301},
     zbl = {1062.05053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1232}
}
Dieter Rautenbach. Graphs with small additive stretch number. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 291-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1232/

[000] [1] H.J. Bandelt and M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182-208, doi: 10.1016/0095-8956(86)90043-2. | Zbl 0605.05024

[001] [2] S. Cicerone and G. Di Stefano, Networks with small stretch number, in: 26th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'00), Lecture Notes in Computer Science 1928 (2000) 95-106, doi: 10.1007/3-540-40064-8₁0.

[002] [3] S. Cicerone, G. D'Ermiliis and G. Di Stefano, (k,+)-Distance-Hereditary Graphs, in: 27th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'01), Lecture Notes in Computer Science 2204 (2001) 66-77, doi: 10.1007/3-540-45477-2₈.

[003] [4] S. Cicerone and G. Di Stefano, Graphs with bounded induced distance, Discrete Appl. Math. 108 (2001) 3-21, doi: 10.1016/S0166-218X(00)00227-4. | Zbl 0965.05040

[004] [5] E. Howorka, Distance hereditary graphs, Quart. J. Math. Oxford 2 (1977) 417-420, doi: 10.1093/qmath/28.4.417. | Zbl 0376.05040

[005] [6] D. Rautenbach, A proof of a conjecture on graphs with bounded induced distance, manuscript (2002).