This paper investigates on those smallest regular graphs with given girths and having small crossing numbers.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1227, author = {G.L. Chia and C.S. Gan}, title = {Minimal regular graphs with given girths and crossing numbers}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {223-237}, zbl = {1060.05506}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1227} }
G.L. Chia; C.S. Gan. Minimal regular graphs with given girths and crossing numbers. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 223-237. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1227/
[000] [1] G. Chartrand and L. Lesniak, Graphs & Digraphs (Third edition), (Chapman & Hall, New York 1996).
[001] [2] R.K. Guy and A. Hill, The crossing number of the complement of a circuit, Discrete Math. 5 (1973) 335-344, doi: 10.1016/0012-365X(73)90127-1. | Zbl 0271.05105
[002] [3] D.J. Kleitman, The crossing number of , J. Combin. Theory B 9 (1970) 315-323, doi: 10.1016/S0021-9800(70)80087-4. | Zbl 0205.54401
[003] [4] M. Koman, On nonplanar graphs with minimum number of vertices and a given girth, Commentationes Math. Univ. Carolinae (Prague) 11 (1970) 9-17. | Zbl 0195.25802
[004] [5] D. McQuillan and R.B. Richter, On 3-regular graphs having crossing number at least 2, J. Graph Theory, 18 (1994) 831-839, doi: 10.1002/jgt.3190180807. | Zbl 0813.05019
[005] [6] M. Nihei, On the girths of regular planar graphs, Pi Mu Epsilon J. 10 (1995) 186-190. | Zbl 0837.05048
[006] [7] B. Richter, Cubic graphs with crossing number two, J. Graph Theory 12 (1988) 363-374, doi: 10.1002/jgt.3190120308. | Zbl 0659.05044
[007] [8] R.D. Ringeisen and L.W. Beineke, On the crossing numbers of products of cycles and graphs of order four, J. Graph Theory 4 (1980) 145-155, doi: 10.1002/jgt.3190040203. | Zbl 0403.05037
[008] [9] G.F. Royle, Graphs and multigraphs, in: C.J. Colbourn and J.H. Dinitz ed., The CRC Handbook of Combinatorial Designs, (CRC Press, New York, 1995) 644-653.
[009] [10] G.F. Royle, Cubic cages, http://www.cs.uwa.edu.au/~gordon/cages/index.html.
[010] [11] P.K. Wong, Cages - a survey, J. Graph Theory 6 (1982) 1-22, doi: 10.1002/jgt.3190060103. | Zbl 0488.05044