New lower bounds on the weighted chromatic number of a graph
Massimiliano Caramia ; Jirí Fiala
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 183-195 / Harvested from The Polish Digital Mathematics Library

In this paper we present theoretical and algorithmic results for the computation of lower bounds on the chromatic number of a weighted graph. In particular, we study different ways of a possible improvement of the lower bound offered by a maximum weighted clique. Based on our findings we devise new algorithms and show their performance on random graphs.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270419
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1224,
     author = {Massimiliano Caramia and Jir\'\i\ Fiala},
     title = {New lower bounds on the weighted chromatic number of a graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {183-195},
     zbl = {1063.05042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1224}
}
Massimiliano Caramia; Jirí Fiala. New lower bounds on the weighted chromatic number of a graph. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 183-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1224/

[000] [1] D. Brelaz, New methods to color the vertices of a graph, Communications of the ACM 22 (1979) 251-256, doi: 10.1145/359094.359101. | Zbl 0394.05022

[001] [2] M. Caramia and P. Dell'Olmo, Iterative coloring extension of a maximum clique, Naval Research Logistics 48 (2001) 518-550, doi: 10.1002/nav.1033.

[002] [3] M. Caramia and P. Dell'Olmo, Solving the minimum weighted coloring problem, Networks 38 (2001) 88-101, doi: 10.1002/net.1028.

[003] [4] B. Descartes, Solution to advanced problem, No 4526. Amer. Math. Monthly 61 (1954) 532.

[004] [5] M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman and Co.: San Francisco, 1979). | Zbl 0411.68039

[005] [6] M. Kubale, Introduction to Computational Complexity and Algorithmic Graph Coloring (Wydawnictwo GTN, Gdańsk, 1998).

[006] [7] M. Kubale and B. Jackowski, A generalized implicit enumeration algorithm for graph coloring, Communications of the ACM 28 (1985) 412-418, doi: 10.1145/3341.3350.

[007] [8] A. Mehrotra and M.A. Trick, A column generation approach for graph coloring, INFORMS J. on Computing 8 (1996) 344-354, doi: 10.1287/ijoc.8.4.344. | Zbl 0884.90144

[008] [9] T.J. Sager and S. Lin, A Pruning procedure for exact graph coloring, ORSA J. on Computing 3 (1993) 226-230, doi: 10.1287/ijoc.3.3.226. | Zbl 0768.68177

[009] [10] E.C. Sewell, An Improved Algorithm for Exact Graph Coloring, in: D.S. Johnson and M.A. Trick, eds., DIMACS Series in Computer Mathematics and Theoretical Computer Science 26 (1996) 359-373. | Zbl 0866.05025