In this paper we present theoretical and algorithmic results for the computation of lower bounds on the chromatic number of a weighted graph. In particular, we study different ways of a possible improvement of the lower bound offered by a maximum weighted clique. Based on our findings we devise new algorithms and show their performance on random graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1224, author = {Massimiliano Caramia and Jir\'\i\ Fiala}, title = {New lower bounds on the weighted chromatic number of a graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {183-195}, zbl = {1063.05042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1224} }
Massimiliano Caramia; Jirí Fiala. New lower bounds on the weighted chromatic number of a graph. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 183-195. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1224/
[000] [1] D. Brelaz, New methods to color the vertices of a graph, Communications of the ACM 22 (1979) 251-256, doi: 10.1145/359094.359101. | Zbl 0394.05022
[001] [2] M. Caramia and P. Dell'Olmo, Iterative coloring extension of a maximum clique, Naval Research Logistics 48 (2001) 518-550, doi: 10.1002/nav.1033.
[002] [3] M. Caramia and P. Dell'Olmo, Solving the minimum weighted coloring problem, Networks 38 (2001) 88-101, doi: 10.1002/net.1028.
[003] [4] B. Descartes, Solution to advanced problem, No 4526. Amer. Math. Monthly 61 (1954) 532.
[004] [5] M.R. Garey and D.S. Johnson, Computers and Intractability (Freeman and Co.: San Francisco, 1979). | Zbl 0411.68039
[005] [6] M. Kubale, Introduction to Computational Complexity and Algorithmic Graph Coloring (Wydawnictwo GTN, Gdańsk, 1998).
[006] [7] M. Kubale and B. Jackowski, A generalized implicit enumeration algorithm for graph coloring, Communications of the ACM 28 (1985) 412-418, doi: 10.1145/3341.3350.
[007] [8] A. Mehrotra and M.A. Trick, A column generation approach for graph coloring, INFORMS J. on Computing 8 (1996) 344-354, doi: 10.1287/ijoc.8.4.344. | Zbl 0884.90144
[008] [9] T.J. Sager and S. Lin, A Pruning procedure for exact graph coloring, ORSA J. on Computing 3 (1993) 226-230, doi: 10.1287/ijoc.3.3.226. | Zbl 0768.68177
[009] [10] E.C. Sewell, An Improved Algorithm for Exact Graph Coloring, in: D.S. Johnson and M.A. Trick, eds., DIMACS Series in Computer Mathematics and Theoretical Computer Science 26 (1996) 359-373. | Zbl 0866.05025