>We prove that the domination number γ(T) of a tree T on n ≥ 3 vertices and with n₁ endvertices satisfies inequality γ(T) ≥ (n+2-n₁)/3 and we characterize the extremal graphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1222, author = {Magdalena Lema\'nska}, title = {Lower bound on the domination number of a tree}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {165-169}, zbl = {1063.05035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1222} }
Magdalena Lemańska. Lower bound on the domination number of a tree. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 165-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1222/
[000] [1] O. Favaron, A bound on the independent domination number of a tree, Vishwa International Journal of Graph Theory 1 (1992) 19-27.
[001] [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan. London, 1976). | Zbl 1226.05083