Generalised irredundance in graphs: Nordhaus-Gaddum bounds
Ernest J. Cockayne ; Stephen Finbow
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 147-160 / Harvested from The Polish Digital Mathematics Library

For each vertex s of the vertex subset S of a simple graph G, we define Boolean variables p = p(s,S), q = q(s,S) and r = r(s,S) which measure existence of three kinds of S-private neighbours (S-pns) of s. A 3-variable Boolean function f = f(p,q,r) may be considered as a compound existence property of S-pns. The subset S is called an f-set of G if f = 1 for all s ∈ S and the class of f-sets of G is denoted by Ωf(G). Only 64 Boolean functions f can produce different classes Ωf(G), special cases of which include the independent sets, irredundant sets, open irredundant sets and CO-irredundant sets of G. Let Qf(G) be the maximum cardinality of an f-set of G. For each of the 64 functions f, we establish sharp upper bounds for the sum Qf(G)+Qf(G̅) and the product Qf(G)Qf(G̅) in terms of n, the order of G.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270673
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1221,
     author = {Ernest J. Cockayne and Stephen Finbow},
     title = {Generalised irredundance in graphs: Nordhaus-Gaddum bounds},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {147-160},
     zbl = {1055.05111},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1221}
}
Ernest J. Cockayne; Stephen Finbow. Generalised irredundance in graphs: Nordhaus-Gaddum bounds. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 147-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1221/

[000] [1] B. Bollobás and E.J. Cockayne, The irredundance number and maximum degree of a graph, Discrete Math. 69 (1984) 197-199. | Zbl 0539.05056

[001] [2] E.J. Cockayne, Generalized irredundance in graphs: hereditary properties and Ramsey numbers, J. Combin. Math. Combin. Comput. 31 (1999) 15-31. | Zbl 0952.05051

[002] [3] E.J. Cockayne, Nordhaus-Gaddum Results for Open Irredundance, J. Combin. Math. Combin. Comput., to appear. | Zbl 1038.05042

[003] [4] E.J. Cockayne, O. Favaron, P.J.P. Grobler, C.M. Mynhardt and J. Puech, Ramsey properties of generalised irredundant sets in graphs, Discrete Math. 231 (2001) 123-134, doi: 10.1016/S0012-365X(00)00311-3. | Zbl 0977.05089

[004] [5] E.J. Cockayne, O. Favaron, C.M. Mynhardt, Open irredundance and maximum degree in graphs (submitted). | Zbl 1207.05095

[005] [6] E.J. Cockayne, P.J.P. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal? J. Combin. Math. Combin. Comput. 25 (1997) 213-223. | Zbl 0907.05032

[006] [7] E.J. Cockayne, S.T. Hedetniemi, D.J. Miller, Properties of hereditary hypergraphs and middle graphs, Canad. Math. Bull. 21 (1978) 261-268, doi: 10.4153/CMB-1978-079-5. | Zbl 0393.05044

[007] [8] E.J. Cockayne, G. MacGillvray, J. Simmons, CO-irredundant Ramsey numbers for graphs, J. Graph Theory 34 (2000) 258-268, doi: 10.1002/1097-0118(200008)34:4<258::AID-JGT2>3.0.CO;2-4

[008] [9] E.J. Cockayne, D. McCrea, C.M. Mynhardt, Nordhaus-Gaddum results for CO-irredundance in graphs, Discrete Math. 211 (2000) 209-215, doi: 10.1016/S0012-365X(99)00282-4. | Zbl 0948.05037

[009] [10] E.J. Cockayne and C.M. Mynhardt, Irredundance and maximum degree in graphs, Combin. Prob. Comput. 6 (1997) 153-157, doi: 10.1017/S0963548396002891. | Zbl 0881.05068

[010] [11] E.J. Cockayne, C.M. Mynhardt, On the product of upper irredundance numbers of a graphs and its complement, Discrete Math. 76 (1988) 117-121, doi: 10.1016/0012-365X(89)90304-X. | Zbl 0672.05049

[011] [12] E.J. Cockayne, C.M. Mynhardt, J. Simmons, The CO-irredundent Ramsey number t(4,7), Utilitas Math. 57 (2000) 193-209. | Zbl 0956.05073

[012] [13] A.M. Farley and A. Proskurowski, Computing the maximum order of an open irredundant set in a tree, Congr. Numer. 41 (1984) 219-228. | Zbl 0546.05034

[013] [14] A.M. Farley and N. Schacham, Senders in broadcast networks: open irredundancy in graphs, Congr. Numer. 38 (1983) 47-57.

[014] [15] O. Favaron, A note on the open irredundance in a graph, Congr. Numer. 66 (1988) 316-318. | Zbl 0673.05083

[015] [16] O. Favaron, A note on the irredundance number after vertex deletion, Discrete Math. 121 (1993) 51-54, doi: 10.1016/0012-365X(93)90536-3. | Zbl 0791.05095

[016] [17] M.R. Fellows, G.H. Fricke, S.T. Hedetniemi and D. Jacobs, The private neighbour cube, SIAM J. Discrete Math. 7 (1994) 41-47, doi: 10.1137/S0895480191199026. | Zbl 0795.05078

[017] [18] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998). | Zbl 0890.05002

[018] [19] S.T. Hedetniemi, D.P. Jacobs and R.C. Laskar, Inequalities involving the rank of a graph, J. Combin. Math. Combin. Comput. 6 (1989) 173-176. | Zbl 0732.05039

[019] [20] E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658. | Zbl 0070.18503

[020] [21] J. Simmons, CO-irredundant Ramsey numbers for graphs (Master's Thesis, University of Victoria, 1998).