A note on total colorings of planar graphs without 4-cycles
Ping Wang ; Jian-Liang Wu
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 125-135 / Harvested from The Polish Digital Mathematics Library

Let G be a 2-connected planar graph with maximum degree Δ such that G has no cycle of length from 4 to k, where k ≥ 4. Then the total chromatic number of G is Δ +1 if (Δ,k) ∈ {(7,4),(6,5),(5,7),(4,14)}.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270290
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1219,
     author = {Ping Wang and Jian-Liang Wu},
     title = {A note on total colorings of planar graphs without 4-cycles},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {125-135},
     zbl = {1056.05067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1219}
}
Ping Wang; Jian-Liang Wu. A note on total colorings of planar graphs without 4-cycles. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 125-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1219/

[000] [1] J.A. Bondy and U.S.R. Murty (Graph Theory with Applications, North-Holland, 1976).

[001] [2] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180. | Zbl 0653.05029

[002] [3] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997) 53-59, doi: 10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G | Zbl 0883.05053

[003] [4] O.V. Borodin, A.V. Kostochka and D.R. Woodall, Total colourings of planar graphs with large girth, European J. Combin. 19 (1998) 19-24, doi: 10.1006/eujc.1997.0152. | Zbl 0886.05065

[004] [5] O.V. Borodin, A.V. Kostochka and D.R. Woodall, List edge and list total colourings of multigarphs, J. Combin. Theory (B) 71 (1997) 184-204, doi: 10.1006/jctb.1997.1780. | Zbl 0876.05032

[005] [6] J.L. Gross and T.W. Tucker (Topological Graph Theory, John and Wiley & Sons, 1987).

[006] [7] A.J.W. Hilton, Recent results on the total chromatic number, Discrete Math. 111 (1993) 323-331, doi: 10.1016/0012-365X(93)90167-R. | Zbl 0793.05059

[007] [8] T.R. Jensen and B. Toft (Graph Coloring Problems, John Wiley & Sons, 1995).

[008] [9] Peter C.B. Lam, B.G. Xu, and J.Z. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory (B) 76 (1999) 117-126, doi: 10.1006/jctb.1998.1893. | Zbl 0931.05036

[009] [10] A. Sanchez-Arroyo, Determining the total coloring number is NP-hard, Discrete Math. 78 (1989) 315-319, doi: 10.1016/0012-365X(89)90187-8. | Zbl 0695.05023

[010] [11] H.P. Yap, Total colourings of graphs, Lecture Notes in Mathematics 1623 (Springer, 1996). | Zbl 0839.05001