In this note we give an upper bound for λ(n), the maximum number of edges in a strongly multiplicative graph of order n, which is sharper than the upper bound obtained by Beineke and Hegde [1].
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1215, author = {Chandrashekar Adiga and H.N. Ramaswamy and D.D. Somashekara}, title = {A note on strongly multiplicative graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {81-83}, zbl = {1057.05072}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1215} }
Chandrashekar Adiga; H.N. Ramaswamy; D.D. Somashekara. A note on strongly multiplicative graphs. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 81-83. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1215/
[000] [1] L.W. Beineke and S.M. Hegde, Strongly multiplicative graphs, Discuss. Math. Graph Theory 21 (2001) 63-76, doi: 10.7151/dmgt.1133. | Zbl 0989.05101
[001] [2] P. Erdős, An asymptotic inequality in the theory of numbers, Vestnik Leningrad, Univ. 15 (1960) 41-49.