If G is a claw-free graph of sufficiently large order n, satisfying a degree condition σₖ > n + k² - 4k + 7 (where k is an arbitrary constant), then G has a 2-factor with at most k - 1 components. As a second main result, we present classes of graphs ₁,...,₈ such that every sufficiently large connected claw-free graph satisfying degree condition σ₆(k) > n + 19 (or, as a corollary, δ(G) > (n+19)/6) either belongs to or is traceable.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1213, author = {Dalibor Fron\v cek and Zden\v ek Ryj\'a\v cek and Zdzis\l aw Skupie\'n}, title = {On traceability and 2-factors in claw-free graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {24}, year = {2004}, pages = {55-71}, zbl = {1055.05094}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1213} }
Dalibor Fronček; Zdeněk Ryjáček; Zdzisław Skupień. On traceability and 2-factors in claw-free graphs. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 55-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1213/
[000] [1] J.A. Bondy and U.S.R. Murty, Graph Theory with applications (Macmillan, London and Elsevier, New York, 1976). | Zbl 1226.05083
[001] [2] V. Chvátal and P. Erdős, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9. | Zbl 0233.05123
[002] [3] S. Brandt, O. Favaron and Z. Ryjáček, Closure and stable hamiltonian properties in claw-free graphs, J. Graph Theory 32 (2000) 30-41, doi: 10.1002/(SICI)1097-0118(200005)34:1<30::AID-JGT4>3.0.CO;2-R | Zbl 0946.05053
[003] [4] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nachr. 22 (1960) 61-85, doi: 10.1002/mana.19600220107. | Zbl 0096.17903
[004] [5] R. Faudree, O. Favaron, E. Flandrin, H. Li and Z.Liu, On 2-factors in claw-free graphs, Discrete Math. 206 (1999) 131-137, doi: 10.1016/S0012-365X(98)00398-7. | Zbl 0981.05084
[005] [6] O. Favaron, E. Flandrin, H. Li and Z. Ryjáček, Clique covering and degree conditions for hamiltonicity in claw-free graphs, Discrete Math. 236 (2001) 65-80, doi: 10.1016/S0012-365X(00)00432-5. | Zbl 0995.05090
[006] [7] R.L. Graham, M. Grötschel and L. Lovász, eds., (Handbook of Combinatorics. North-Holland, 1995). | Zbl 0833.05001
[007] [8] R. Gould and M. Jacobson, Two-factors with few cycles in claw-free graphs, preprint 1999. | Zbl 0979.05084
[008] [9] O. Kovárík, M. Mulac and Z. Ryjáček, A note on degree conditions for hamiltonicity in 2-connected claw-free graphs, Discrete Math. 244 (2002) 253-268, doi: 10.1016/S0012-365X(01)00088-7. | Zbl 0992.05051
[009] [10] H. Li, A note on hamiltonian claw-free graphs, Rapport de Recherche LRI No. 1022 (Univ. de Paris-Sud, 1996), submitted.
[010] [11] F. Harary and C. St.J.A. Nash-Williams, On eulerian and hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701-709, doi: 10.4153/CMB-1965-051-3. | Zbl 0136.44704
[011] [12] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory (B) 70 (1997) 217-224, doi: 10.1006/jctb.1996.1732. | Zbl 0872.05032
[012] [13] Z. Ryjáček, A. Saito and R.H. Schelp, Closure, 2-factors and cycle coverings in claw-free graphs, J. Graph Theory 32 (1999) 109-117, doi: 10.1002/(SICI)1097-0118(199910)32:2<109::AID-JGT1>3.0.CO;2-O | Zbl 0932.05045