Hamilton cycles in split graphs with large minimum degree
Ngo Dac Tan ; Le Xuan Hung
Discussiones Mathematicae Graph Theory, Tome 24 (2004), p. 23-40 / Harvested from The Polish Digital Mathematics Library

A graph G is called a split graph if the vertex-set V of G can be partitioned into two subsets V₁ and V₂ such that the subgraphs of G induced by V₁ and V₂ are empty and complete, respectively. In this paper, we characterize hamiltonian graphs in the class of split graphs with minimum degree δ at least |V₁| - 2.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:270580
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1210,
     author = {Ngo Dac Tan and Le Xuan Hung},
     title = {Hamilton cycles in split graphs with large minimum degree},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {24},
     year = {2004},
     pages = {23-40},
     zbl = {1054.05064},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1210}
}
Ngo Dac Tan; Le Xuan Hung. Hamilton cycles in split graphs with large minimum degree. Discussiones Mathematicae Graph Theory, Tome 24 (2004) pp. 23-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1210/

[000] [1] M. Behzad and G. Chartrand, Introduction to the theory of graphs (Allyn and Bacon, Boston, 1971). | Zbl 0238.05101

[001] [2] R.E. Burkard and P.L. Hammer, A note on hamiltonian split graphs, J. Combin. Theory 28 (1980) 245-248, doi: 10.1016/0095-8956(80)90069-6. | Zbl 0403.05058

[002] [3] V. Chvatal, New directions in hamiltonian graph theory, in: New directions in the theory of graphs (Proc. Third Ann Arbor Conf. Graph Theory, Univ. Michigan, Ann Arbor, Mich., 1971), pp. 65-95, Acad. Press, NY 1973.

[003] [4] V. Chvatal and P. Erdős, A note on hamiltonian circiuts, Discrete Math. 2 (1972) 111-113, doi: 10.1016/0012-365X(72)90079-9. | Zbl 0233.05123

[004] [5] V. Chvatal and P.L. Hammer, Aggregation of inequalities in integer programming, Ann. Discrete Math. 1 (1977) 145-162, doi: 10.1016/S0167-5060(08)70731-3. | Zbl 0384.90091

[005] [6] S. Foldes, P.L. Hammer, Split graphs, in: Proceedings of the Eighth Southeastern conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), 311-315. Congressus Numerantium, No XIX, Utilitas Math., Winnipeg, Man., 1977. | Zbl 0407.05071

[006] [7] S. Foldes and P.L. Hammer, On a class of matroid-producing graphs, in: Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely 1976) Vol. 1, 331-352, Colloq. Math. Soc. Janós Bolyai, 18 (North-Holland, Amsterdam-New York, 1978).

[007] [8] R.J. Gould, Updating the hamiltonian problem, a survey, J. Graph Theory 15 (1991) 121-157, doi: 10.1002/jgt.3190150204. | Zbl 0746.05039

[008] [9] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26. | Zbl 0010.34503

[009] [10] F. Harary and U. Peled, Hamiltonian threshold graphs, Discrete Appl. Math. 16 (1987) 11-15, doi: 10.1016/0166-218X(87)90050-3. | Zbl 0601.05033

[010] [11] B. Jackson and O. Ordaz, Chvatal-Erdős conditions for paths and cycles in graphs and digraphs, a survey, Discrete Math. 84 (1990) 241-254, doi: 10.1016/0012-365X(90)90130-A. | Zbl 0726.05043

[011] [12] J. Peemöller, Necessary conditions for hamiltonian split graphs, Discrete Math. 54 (1985) 39-47. | Zbl 0563.05041

[012] [13] U.N. Peled, Regular Boolean functions and their polytope, Chapter VI (Ph. D. Thesis, Univ. of Waterloo, Dep. Combin. and Optimization, 1975).

[013] [14] S.B. Rao, Solution of the hamiltonian problem for self-complementary graphs, J. Combin. Theory (B) 27 (1979) 13-41, doi: 10.1016/0095-8956(79)90065-0. | Zbl 0406.05047