Modular and median signpost systems and their underlying graphs
Henry Martyn Mulder ; Ladislav Nebeský
Discussiones Mathematicae Graph Theory, Tome 23 (2003), p. 309-324 / Harvested from The Polish Digital Mathematics Library

The concept of a signpost system on a set is introduced. It is a ternary relation on the set satisfying three fairly natural axioms. Its underlying graph is introduced. When the underlying graph is disconnected some unexpected things may happen. The main focus are signpost systems satisfying some extra axioms. Their underlying graphs have lots of structure: the components are modular graphs or median graphs. Yet another axiom guarantees that the underlying graph is also connected. The main results of this paper concern if-and-only-if characterizations involving signpost systems satisfying additional axioms on the one hand and modular, respectively median graphs on the other hand.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:270381
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1204,
     author = {Henry Martyn Mulder and Ladislav Nebesk\'y},
     title = {Modular and median signpost systems and their underlying graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {23},
     year = {2003},
     pages = {309-324},
     zbl = {1115.05302},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1204}
}
Henry Martyn Mulder; Ladislav Nebeský. Modular and median signpost systems and their underlying graphs. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 309-324. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1204/

[000] [1] S.P. Avann, Metric ternary distributive semi-lattices, Proc. Amer. Math. Soc. 11 (1961) 407-414, doi: 10.1090/S0002-9939-1961-0125807-5. | Zbl 0099.02201

[001] [2] H.-J. Bandelt and H.M. Mulder, Pseudo-modular graphs, Discrete Math. 62 (1986) 245-260, doi: 10.1016/0012-365X(86)90212-8. | Zbl 0606.05053

[002] [3] W. Imrich, S. Klavžar, and H. M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494. | Zbl 0916.68106

[003] [4] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127. | Zbl 0931.05072

[004] [5] H.M. Mulder, The interval function of a graph (Math. Centre Tracts 132, Math. Centre, Amsterdam, 1980). | Zbl 0446.05039

[005] [6] L. Nebeský, Graphic algebras, Comment. Math. Univ. Carolinae 11 (1970) 533-544. | Zbl 0208.02701

[006] [7] L. Nebeský, Median graphs, Comment. Math. Univ. Carolinae 12 (1971) 317-325. | Zbl 0215.34001

[007] [8] L. Nebeský, Geodesics and steps in connected graphs, Czechoslovak Math. Journal 47 (122) (1997) 149-161. | Zbl 0898.05041

[008] [9] L. Nebeský, A tree as a finite nonempty set with a binary operation, Mathematica Bohemica 125 (2000) 455-458. | Zbl 0963.05032

[009] [10] L. Nebeský, A theorem for an axiomatic approach to metric properties of graphs, Czechoslovak Math. Journal 50 (125) (2000) 121-133. | Zbl 1033.05033

[010] [11] M. Sholander, Trees, lattices, order, and betweenness, Proc. Amer. Math. Soc. 3 (1952) 369-381, doi: 10.1090/S0002-9939-1952-0048405-5.