Tree-like isometric subgraphs of hypercubes
Bostjan Brešar ; Wilfried Imrich ; Sandi Klavžar
Discussiones Mathematicae Graph Theory, Tome 23 (2003), p. 227-240 / Harvested from The Polish Digital Mathematics Library

Tree-like isometric subgraphs of hypercubes, or tree-like partial cubes as we shall call them, are a generalization of median graphs. Just as median graphs they capture numerous properties of trees, but may contain larger classes of graphs that may be easier to recognize than the class of median graphs. We investigate the structure of tree-like partial cubes, characterize them, and provide examples of similarities with trees and median graphs. For instance, we show that the cube graph of a tree-like partial cube is dismantlable. This in particular implies that every tree-like partial cube G contains a cube that is invariant under every automorphism of G. We also show that weak retractions preserve tree-like partial cubes, which in turn implies that every contraction of a tree-like partial cube fixes a cube. The paper ends with several Frucht-type results and a list of open problems.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:270257
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1199,
     author = {Bostjan Bre\v sar and Wilfried Imrich and Sandi Klav\v zar},
     title = {Tree-like isometric subgraphs of hypercubes},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {23},
     year = {2003},
     pages = {227-240},
     zbl = {1055.05129},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1199}
}
Bostjan Brešar; Wilfried Imrich; Sandi Klavžar. Tree-like isometric subgraphs of hypercubes. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 227-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1199/

[000] [1] F. Aurenhammer and J. Hagauer, Recognizing binary Hamming graphs in O(n²log n) time, Math. Systems Theory 28 (1995) 387-396, doi: 10.1007/BF01185863. | Zbl 0833.68087

[001] [2] H.-J. Bandelt, Retracts of hypercubes, J. Graph Theory 8 (1984) 501-510, doi: 10.1002/jgt.3190080407. | Zbl 0551.05060

[002] [3] H.-J. Bandelt and E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory (B) 51 (1991) 34-45, doi: 10.1016/0095-8956(91)90004-4. | Zbl 0726.05060

[003] [4] H.-J. Bandelt, M. van de Vel, A fixed cube theorem for median graphs, Discrete Math. 62 (1987) 129-137, doi: 10.1016/0012-365X(87)90022-7. | Zbl 0628.05053

[004] [5] H.-J. Bandelt and M. van de Vel, Superextensions and the depth of median graphs, J. Combin. Theory (A) 57 (1991) 187-202, doi: 10.1016/0097-3165(91)90044-H. | Zbl 0756.05091

[005] [6] B. Brešar, W. Imrich and S. Klavžar, Fast recognition algorithms for classes of partial cubes, Discrete Appl. Math., in press. | Zbl 1022.05050

[006] [7] B. Brešar, W. Imrich, S. Klavžar, H.M. Mulder and R. Skrekovski, Tiled partial cubes, J. Graph Theory 40 (2002) 91-103, doi: 10.1002/jgt.10031.

[007] [8] B. Brešar, S. Klavžar, R. Skrekovski, Cubes polynomial and its derivatives, Electron. J. Combin. 10 (2003) #R3, pp. 11. | Zbl 1020.05035

[008] [9] V. Chepoi, d-Convexity and isometric subgraphs of Hamming graphs, Cybernetics 1 (1988) 6-10, doi: 10.1007/BF01069520.

[009] [10] V. Chepoi, Bridged graphs are cop-win graphs: an algorithmic proof, J. Combin. Theory (B) 69 (1997) 97-100, doi: 10.1006/jctb.1996.1726. | Zbl 0873.05060

[010] [11] D. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory (B) 14 (1973) 263-267, doi: 10.1016/0095-8956(73)90010-5. | Zbl 0245.05113

[011] [12] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. 6 (1938) 239-250. | Zbl 0020.07804

[012] [13] J. Hagauer, W. Imrich and S. Klavžar, Recognizing median graphs in subquadratic time, Theoret. Comput. Sci. 215 (1999) 123-136, doi: 10.1016/S0304-3975(97)00136-9. | Zbl 0913.68152

[013] [14] W. Imrich and S. Klavžar, A convexity lemma and expansion procedures for bipartite graphs, European J. Combin. 19 (1998) 677-685, doi: 10.1006/eujc.1998.0229. | Zbl 0918.05085

[014] [15] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley & Sons, New York, 2000).

[015] [16] W. Imrich, S. Klavžar, and H.M. Mulder, Median graphs and triangle-free graphs, SIAM J. Discrete Math. 12 (1999) 111-118, doi: 10.1137/S0895480197323494. | Zbl 0916.68106

[016] [17] S. Klavžar and A. Lipovec, Partial cubes as subdivision graphs and as generalized Petersen graphs, Discrete Math. 263 (2003) 157-165, doi: 10.1016/S0012-365X(02)00575-7. | Zbl 1014.05064

[017] [18] S. Klavžar and H.M. Mulder, Median graphs: characterizations, location theory and related structures, J. Combin. Math. Combin. Comp. 30 (1999) 103-127. | Zbl 0931.05072

[018] [19] H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197-204, doi: 10.1016/0012-365X(78)90199-1. | Zbl 0394.05038

[019] [20] H.M. Mulder, n-Cubes and median graphs, J. Graph Theory 4 (1980) 107-110, doi: 10.1002/jgt.3190040112. | Zbl 0427.05046

[020] [21] H.M. Mulder, The Interval Function of a Graph, (Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam, 1980). | Zbl 0446.05039

[021] [22] H.M. Mulder, The expansion procedure for graphs, in: R. Bodendiek (ed.), Contemporary Methods in Graph Theory (Wissenschaftsverlag, Mannheim, 1990) 459-477. | Zbl 0744.05064

[022] [23] R. Nowakowski and I. Rival, Fixed-edge theorem for graphs with loops, J. Graph Theory 3 (1979) 339-350, doi: 10.1002/jgt.3190030404.

[023] [24] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239, doi: 10.1016/0012-365X(83)90160-7. | Zbl 0508.05058

[024] [25] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957) 515-525, doi: 10.4153/CJM-1957-060-7. | Zbl 0079.39202

[025] [26] R. Skrekovski, Two relations for median graphs, Discrete Math. 226 (2001) 351-353, doi: 10.1016/S0012-365X(00)00120-5. | Zbl 0958.05043

[026] [27] P.S. Soltan and V. Chepoi, Solution of the Weber problem for discrete median metric spaces, (Russian) Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 85 (1987) 52-76.

[027] [28] C. Tardif, Prefibers and the Cartesian product of metric spaces, Discrete Math. 109 (1992) 283-288, doi: 10.1016/0012-365X(92)90298-T. | Zbl 0777.05097

[028] [29] P. Winkler, Isometric embeddings in products of complete graphs, Discrete Appl. Math. 7 (1984) 221-225, doi: 10.1016/0166-218X(84)90069-6. | Zbl 0529.05055