A well-known theorem of Hajós claims that every graph with chromathic number greater than k can be constructed from disjoint copies of the complete graph by repeated application of three simple operations. This classical result has been extended in 1978 to colorings of hypergraphs by C. Benzaken and in 1996 to list-colorings of graphs by S. Gravier. In this note, we capture both variations to extend Hajós’ theorem to list-colorings of hypergraphs.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1197, author = {Claude Benzaken and Sylvain Gravier and Riste Skrekovski}, title = {Haj\'os' theorem for list colorings of hypergraphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {23}, year = {2003}, pages = {207-213}, zbl = {1054.05035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1197} }
Claude Benzaken; Sylvain Gravier; Riste Skrekovski. Hajós' theorem for list colorings of hypergraphs. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 207-213. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1197/
[000] [1] C. Benzaken, Post's closed systems and the weak chromatic number of hypergraphs, Discrete Math. 23 (1978) 77-84, doi: 10.1016/0012-365X(78)90106-1. | Zbl 0397.05038
[001] [2] C. Benzaken, Hajós' theorem for hypergraphs, Annals of Discrete Math. 17 (1983) 53-77.
[002] [3] P. Erdős, A.L. Rubin, and H. Taylor, Choosability in graphs, Congr. Numer. 26 (1980) 122-157. | Zbl 0469.05032
[003] [4] S. Gravier, A Hajós-like theorem for list colorings, Discrete Math. 152 (1996) 299-302, doi: 10.1016/0012-365X(95)00350-6. | Zbl 0853.05037
[004] [5] G. Hajós, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin Luther Univ. Math.-Natur. Reihe 10 (1961) 116-117.
[005] [6] B. Mohar, Hajós theorem for colorings of edge-weighted graphs, manuscript, 2001.
[006] [7] V.G. Vizing, Colouring the vertices of a graph in prescribed colours (in Russian), Diskret. Anal. 29 (1976) 3-10.
[007] [8] X. Zhu, An analogue of Hajós's theorem for the circular chromatic number, Proc. Amer. Math. Soc. 129 (2001) 2845-2852, doi: 10.1090/S0002-9939-01-05908-1. | Zbl 0971.05042