A 3-uniform hypergraph is called a minimum 3-tree, if for any 3-coloring of its vertex set there is a heterochromatic triple and the hypergraph has the minimum possible number of triples. There is a conjecture that the number of triples in such 3-tree is ⎡(n(n-2))/3⎤ for any number of vertices n. Here we give a proof of this conjecture for any n ≡ 0,1 mod 12.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1194, author = {Jorge L. Arocha and Joaqu\'\i n Tey}, title = {The size of minimum 3-trees: cases 0 and 1 mod 12}, journal = {Discussiones Mathematicae Graph Theory}, volume = {23}, year = {2003}, pages = {177-187}, zbl = {1038.05040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1194} }
Jorge L. Arocha; Joaquín Tey. The size of minimum 3-trees: cases 0 and 1 mod 12. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 177-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1194/
[000] [1] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405. | Zbl 0776.05079
[001] [2] J.L. Arocha and J. Tey, The size of minimum 3-trees: Cases 3 and 4 mod 6, J. Graph Theory 30 (1999) 157-166, doi: 10.1002/(SICI)1097-0118(199903)30:3<157::AID-JGT1>3.0.CO;2-S | Zbl 0917.05053
[002] [3] J.L. Arocha and J. Tey, The size of minimum 3-trees: Case 2 mod 3, Bol. Soc. Mat. Mexicana (3) 8 no. 1 (2002) 1-4. | Zbl 1006.05011
[003] [4] L. Lovász, Topological and algebraic methods in graph theory, in: Graph Theory and Related Topics, Proceedings of Conference in Honour of W.T. Tutte, Waterloo, Ontario 1977, (Academic Press, New York, 1979) 1-14.