We determine upper bounds for and , the domination and independent domination numbers, respectively, of the graph obtained from the moves of queens on the n×n chessboard drawn on the torus.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1193, author = {Christina M. Mynhardt}, title = {Upper bounds for the domination numbers of toroidal queens graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {23}, year = {2003}, pages = {163-175}, zbl = {1035.05066}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1193} }
Christina M. Mynhardt. Upper bounds for the domination numbers of toroidal queens graphs. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 163-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1193/
[000] [1] W. Ahrens, Mathematische Unterhalten und Spiele (B.G. Teubner, Leipzig-Berlin, 1910).
[001] [2] M. Bezzel, Schachfreund, Berliner Schachzeitung, 3 (1848) 363.
[002] [3] A.P. Burger, E.J. Cockayne and C.M. Mynhardt, Queens graphs for chessboards on the torus, Australas. J. Combin. 24 (2001) 231-246. | Zbl 0979.05080
[003] [4] A.P. Burger and C.M. Mynhardt, Symmetry and domination in queens graphs, Bulletin of the ICA 29 (2000) 11-24. | Zbl 0954.05034
[004] [5] A.P. Burger and C.M. Mynhardt, Properties of dominating sets of the queens graph , Utilitas Math. 57 (2000) 237-253. | Zbl 0955.05076
[005] [6] A.P. Burger and C.M. Mynhardt, An improved upper bound for queens domination numbers, Discrete Math., to appear. | Zbl 1015.05066
[006] [7] A.P. Burger, C.M. Mynhardt and W.D. Weakley, The domination number of the toroidal queens graph of size 3k × 3k, Australas. J. Combin., to appear. | Zbl 1030.05094
[007] [8] E.J. Cockayne, Chessboard Domination Problems, Discrete Math. 86 (1990) 13-20, doi: 10.2307/2325220. | Zbl 0818.05057
[008] [13] P.R.J. Östergå rd and W.D. Weakley, Values of domination numbers of the queen's graph, Electron. J. Combin. 8 (2001) no. 1, Research paper 29, 19 pp.
[009] [14] W.D. Weakley, Domination In The Queen's Graph, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory, Combinatorics, and Algorithms, Volume 2, pages 1223-1232 (Wiley-Interscience, New York, 1995). | Zbl 0842.05053
[010] [15] W.D. Weakley, A lower bound for domination numbers of the queen's graph, J. Combin. Math. Combin. Comput., to appear. | Zbl 1012.05124
[011] [16] W.D. Weakley, Upper bounds for domination numbers of the queen's graph, Discrete Math. 242 (2002) 229-243, doi:10.1016/S0012-365X(00)00467-2.