Upper bounds for the domination numbers of toroidal queens graphs
Christina M. Mynhardt
Discussiones Mathematicae Graph Theory, Tome 23 (2003), p. 163-175 / Harvested from The Polish Digital Mathematics Library

We determine upper bounds for γ(Qnt) and i(Qt), the domination and independent domination numbers, respectively, of the graph Qt obtained from the moves of queens on the n×n chessboard drawn on the torus.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:270444
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1193,
     author = {Christina M. Mynhardt},
     title = {Upper bounds for the domination numbers of toroidal queens graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {23},
     year = {2003},
     pages = {163-175},
     zbl = {1035.05066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1193}
}
Christina M. Mynhardt. Upper bounds for the domination numbers of toroidal queens graphs. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 163-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1193/

[000] [1] W. Ahrens, Mathematische Unterhalten und Spiele (B.G. Teubner, Leipzig-Berlin, 1910).

[001] [2] M. Bezzel, Schachfreund, Berliner Schachzeitung, 3 (1848) 363.

[002] [3] A.P. Burger, E.J. Cockayne and C.M. Mynhardt, Queens graphs for chessboards on the torus, Australas. J. Combin. 24 (2001) 231-246. | Zbl 0979.05080

[003] [4] A.P. Burger and C.M. Mynhardt, Symmetry and domination in queens graphs, Bulletin of the ICA 29 (2000) 11-24. | Zbl 0954.05034

[004] [5] A.P. Burger and C.M. Mynhardt, Properties of dominating sets of the queens graph Q4k+3, Utilitas Math. 57 (2000) 237-253. | Zbl 0955.05076

[005] [6] A.P. Burger and C.M. Mynhardt, An improved upper bound for queens domination numbers, Discrete Math., to appear. | Zbl 1015.05066

[006] [7] A.P. Burger, C.M. Mynhardt and W.D. Weakley, The domination number of the toroidal queens graph of size 3k × 3k, Australas. J. Combin., to appear. | Zbl 1030.05094

[007] [8] E.J. Cockayne, Chessboard Domination Problems, Discrete Math. 86 (1990) 13-20, doi: 10.2307/2325220. | Zbl 0818.05057

[008] [13] P.R.J. Östergå rd and W.D. Weakley, Values of domination numbers of the queen's graph, Electron. J. Combin. 8 (2001) no. 1, Research paper 29, 19 pp.

[009] [14] W.D. Weakley, Domination In The Queen's Graph, in: Y. Alavi and A.J. Schwenk, eds, Graph Theory, Combinatorics, and Algorithms, Volume 2, pages 1223-1232 (Wiley-Interscience, New York, 1995). | Zbl 0842.05053

[010] [15] W.D. Weakley, A lower bound for domination numbers of the queen's graph, J. Combin. Math. Combin. Comput., to appear. | Zbl 1012.05124

[011] [16] W.D. Weakley, Upper bounds for domination numbers of the queen's graph, Discrete Math. 242 (2002) 229-243, doi:10.1016/S0012-365X(00)00467-2.