Perfect connected-dominant graphs
Igor Edmundovich Zverovich
Discussiones Mathematicae Graph Theory, Tome 23 (2003), p. 159-162 / Harvested from The Polish Digital Mathematics Library

If D is a dominating set and the induced subgraph G(D) is connected, then D is a connected dominating set. The minimum size of a connected dominating set in G is called connected domination number γc(G) of G. A graph G is called a perfect connected-dominant graph if γ(H)=γc(H) for each connected induced subgraph H of G.We prove that a graph is a perfect connected-dominant graph if and only if it contains no induced path P₅ and induced cycle C₅.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:270408
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1192,
     author = {Igor Edmundovich Zverovich},
     title = {Perfect connected-dominant graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {23},
     year = {2003},
     pages = {159-162},
     zbl = {1037.05038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1192}
}
Igor Edmundovich Zverovich. Perfect connected-dominant graphs. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 159-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1192/

[000] [1] S. Arumugam and J.J. Paulraj, On graphs with equal domination and connected domination numbers, Discrete Math. 206 (1999) 45-49, doi: 10.1016/S0012-365X(98)00390-2. | Zbl 0933.05114

[001] [2] K. Arvind and R.C. Pandu, Connected domination and Steiner set on weighted permutation graphs, Inform. Process. Lett. 41 (1992) 215-220, doi: 10.1016/0020-0190(92)90183-V.

[002] [3] H. Balakrishnan, A. Rajaram and R.C. Pandu, Connected domination and Steiner set on asteroidal triple-free graphs, Lecture Notes Math. 709 (1993) 131-141.

[003] [4] C. Bo and B. Liu, Some inequalities about connected domination number, Discrete Math. 159 (1996) 241-245, doi: 10.1016/0012-365X(95)00088-E. | Zbl 0859.05053

[004] [5] J.E. Dunbar, J.W. Grossman, J.H. Hattingh, S.T. Hedetniemi and A.A. McRae, On weakly connected domination in graphs, Discrete Math. 167/168 (1997) 261-269, doi: 10.1016/S0012-365X(96)00233-6. | Zbl 0871.05037

[005] [6] D.V. Korobitsyn, On the complexity of determining the domination number in monogenic classes of graphs, Discrete Math. 2 (1990) 90-96. | Zbl 0729.05047

[006] [7] J.J. Paulrau and S. Arumugam, On connected cutfree domination in graphs, Indian J. Pure Appl. Math. 23 (1992) 643-647. | Zbl 0772.05054

[007] [8] L. Sun, Some results on connected domination of graphs, Math. Appl. 5 (1992) 29-34. | Zbl 0890.05039

[008] [9] E.S. Wolk, A note on 'The comparability graph of a tree', Proc. Amer. Math. Soc. 16 (1966) 17-20, doi: 10.1090/S0002-9939-1965-0172274-5. | Zbl 0137.18105

[009] [10] E.S. Wolk, The comparability graph of a tree, Proc. Amer. Math. Soc. 13 (1962) 789-795. | Zbl 0109.16402