Prime ideals in the lattice of additive induced-hereditary graph properties
Amelie J. Berger ; Peter Mihók
Discussiones Mathematicae Graph Theory, Tome 23 (2003), p. 117-127 / Harvested from The Polish Digital Mathematics Library

An additive induced-hereditary property of graphs is any class of finite simple graphs which is closed under isomorphisms, disjoint unions and induced subgraphs. The set of all additive induced-hereditary properties of graphs, partially ordered by set inclusion, forms a completely distributive lattice. We introduce the notion of the join-decomposability number of a property and then we prove that the prime ideals of the lattice of all additive induced-hereditary properties are divided into two groups, determined either by a set of excluded join-irreducible properties or determined by a set of excluded properties with infinite join-decomposability number. We provide non-trivial examples of each type.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:270178
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1189,
     author = {Amelie J. Berger and Peter Mih\'ok},
     title = {Prime ideals in the lattice of additive induced-hereditary graph properties},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {23},
     year = {2003},
     pages = {117-127},
     zbl = {1037.05044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1189}
}
Amelie J. Berger; Peter Mihók. Prime ideals in the lattice of additive induced-hereditary graph properties. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 117-127. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1189/

[000] [1] A. Berger, I. Broere, P. Mihók and S. Moagi, Meet- and join-irreducibility of additive hereditary properties of graphs, Discrete Math. 251 (2002) 11-18, doi: 10.1016/S0012-365X(01)00323-5. | Zbl 1003.05101

[001] [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[002] [3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.

[003] [4] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D.S. Scott, A Compendium of Continuous Lattices (Springer-Verlag, 1980). | Zbl 0452.06001

[004] [5] G. Grätzer, General Lattice Theory (Second edition, Birkhäuser Verlag, Basel, Boston, Berlin 1998). | Zbl 0909.06002

[005] [6] J. Jakubík, On the lattice of additive hereditary properties of finite graphs, Discuss. Math. General Algebra and Applications 22 (2002) 73-86. | Zbl 1032.06003

[006] [7] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995). | Zbl 0971.05046

[007] [8] E.R. Scheinerman, Characterizing intersection classes of graphs, Discrete Math. 55 (1985) 185-193, doi: 10.1016/0012-365X(85)90047-0. | Zbl 0597.05056

[008] [9] E.R. Scheinerman, On the structure of hereditary classes of graphs, J. Graph Theory 10 (1986) 545-551. | Zbl 0609.05057