An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider the embeddable (n,n)-graphs. We prove that with few exceptions the corresponding permutation may be chosen as cyclic one.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1187, author = {Agnieszka G\"orlich and Monika Pil\'sniak and Mariusz Wo\'zniak}, title = {On cyclically embeddable (n,n)-graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {23}, year = {2003}, pages = {85-104}, zbl = {1037.05046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1187} }
Agnieszka Görlich; Monika Pilśniak; Mariusz Woźniak. On cyclically embeddable (n,n)-graphs. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 85-104. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1187/
[000] [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[001] [2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory 25 (B) (1978) 105-124. | Zbl 0387.05020
[002] [3] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308. | Zbl 0375.05046
[003] [4] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996. | Zbl 0379.05023
[004] [5] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31:106 (1981) 53-62. | Zbl 0479.05028
[005] [6] T. Gangopadhyay, Packing graphs in their complements, Discrete Math. 186 (1998) 117-124, doi: 10.1016/S0012-365X(97)00186-6. | Zbl 0958.05111
[006] [7] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combin. 4 (1977) 133-142. | Zbl 0418.05003
[007] [8] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. & Math. Sci. 1 (1978) 335-338, doi: 10.1155/S0161171278000356. | Zbl 0391.05047
[008] [9] M. Woźniak, Packing of Graphs, Dissertationes Math. 362 (1997) pp.78.
[009] [10] M. Woźniak, On cyclically embeddable graphs, Discuss. Math. Graph Theory 19 (1999) 241-248, doi: 10.7151/dmgt.1099. | Zbl 0958.05041
[010] [11] M. Woźniak, On cyclically embeddable (n,n-1)-graphs, Discrete Math. 251 (2002) 173-179. | Zbl 1001.05101
[011] [12] H.P. Yap, Some Topics In Graph Theory, London Mathematical Society, Lectures Notes Series 108 (Cambridge University Press, Cambridge, 1986). | Zbl 0588.05002
[012] [13] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404. | Zbl 0685.05036