Let G = (L,R;E) be a bipartite graph such that V(G) = L∪R, |L| = p and |R| = q. G is called (p,q)-tree if G is connected and |E(G)| = p+q-1. Let G = (L,R;E) and H = (L',R';E') be two (p,q)-tree. A bijection f:L ∪ R → L' ∪ R' is said to be a biplacement of G and H if f(L) = L' and f(x)f(y) ∉ E' for every edge xy of G. A biplacement of G and its copy is called 2-placement of G. A bipartite graph G is 2-placeable if G has a 2-placement. In this paper we give all (p,q)-trees which are not 2-placeable.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1183, author = {Beata Orchel}, title = {2-placement of (p,q)-trees}, journal = {Discussiones Mathematicae Graph Theory}, volume = {23}, year = {2003}, pages = {23-36}, zbl = {1051.05052}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1183} }
Beata Orchel. 2-placement of (p,q)-trees. Discussiones Mathematicae Graph Theory, Tome 23 (2003) pp. 23-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1183/
[000] [1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).
[001] [2] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53-62. | Zbl 0479.05028
[002] [3] J.-L. Fouquet and A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993) 85-92, doi: 10.1016/0012-365X(93)90540-A. | Zbl 0791.05080
[003] [4] M. Makheo, J.-F. Saclé and M. Woźniak, Edge-disjoint placement of three trees, European J. Combin. 17 (1996) 543-563, doi: 10.1006/eujc.1996.0047. | Zbl 0861.05019
[004] [5] B. Orchel, Placing bipartite graph of small size I, Folia Scientiarum Universitatis Technicae Resoviensis 118 (1993) 51-58.
[005] [6] H. Wang and N. Saver, Packing three copies of a tree into a complete graph, European J. Combin. 14 (1993) 137-142. | Zbl 0773.05084