Generalized edge-chromatic numbers and additive hereditary properties of graphs
Michael J. Dorfling ; Samantha Dorfling
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 349-359 / Harvested from The Polish Digital Mathematics Library

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be hereditary properties of graphs. The generalized edge-chromatic number ρ'() is defined as the least integer n such that ⊆ n. We investigate the generalized edge-chromatic numbers of the properties → H, ₖ, ₖ, *ₖ, ₖ and ₖ.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270282
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1180,
     author = {Michael J. Dorfling and Samantha Dorfling},
     title = {Generalized edge-chromatic numbers and additive hereditary properties of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {349-359},
     zbl = {1030.05039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1180}
}
Michael J. Dorfling; Samantha Dorfling. Generalized edge-chromatic numbers and additive hereditary properties of graphs. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 349-359. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1180/

[000] [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[001] [2] M. Borowiecki and M. Hałuszczak, Decompositions of some classes of graphs, Report No. IM-3-99 (Institute of Mathematics, Technical University of Zielona Góra, 1999). | Zbl 0958.05112

[002] [3] I. Broere and M. J. Dorfling, The decomposability of additive hereditary properties of graphs, Discuss. Math. Graph Theory 20 (2000) 281-291, doi: 10.7151/dmgt.1127. | Zbl 0982.05082

[003] [4] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068. | Zbl 0912.05048

[004] [5] I. Broere, S. Dorfling and E. Jonck, Generalized chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 259-270, doi: 10.7151/dmgt.1174. | Zbl 1030.05038

[005] [6] J. Nesetril and V. Rödl, Simple proof of the existence of restricted Ramsey graphs by means of a partite construction, Combinatorica 1 (2) (1981) 199-202, doi: 10.1007/BF02579274. | Zbl 0491.05044