Effect of edge-subdivision on vertex-domination in a graph
Amitava Bhattacharya ; Gurusamy Rengasamy Vijayakumar
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 335-347 / Harvested from The Polish Digital Mathematics Library

Let G be a graph with Δ(G) > 1. It can be shown that the domination number of the graph obtained from G by subdividing every edge exactly once is more than that of G. So, let ξ(G) be the least number of edges such that subdividing each of these edges exactly once results in a graph whose domination number is more than that of G. The parameter ξ(G) is called the subdivision number of G. This notion has been introduced by S. Arumugam and S. Velammal. They have conjectured that for any graph G with Δ(G) > 1, ξ(G) ≤ 3. We show that the conjecture is false and construct for any positive integer n ≥ 3, a graph G of order n with ξ(G) > [1/3]log₂ n. The main results of this paper are the following: (i) For any connected graph G with at least three vertices, ξ(G) ≤ γ(G)+1 where γ(G) is the domination number of G. (ii) If G is a connected graph of sufficiently large order n, then ξ(G) ≤ 4√n ln n+5

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270539
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1179,
     author = {Amitava Bhattacharya and Gurusamy Rengasamy Vijayakumar},
     title = {Effect of edge-subdivision on vertex-domination in a graph},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {335-347},
     zbl = {1028.05072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1179}
}
Amitava Bhattacharya; Gurusamy Rengasamy Vijayakumar. Effect of edge-subdivision on vertex-domination in a graph. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 335-347. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1179/

[000] [1] N. Alon and J. H. Spencer, The Probabilistic Method, Second Edition, John Wiley and Sons Inc. (Tel Aviv and New York, 2000). | Zbl 0996.05001

[001] [2] R. Diestel, Graph Theory, Second Edition (Springer-Verlag, New York, 2000).

[002] [3] T.W. Haynes, S.M. Hedetniemi and S.T. Hedetniemi, Domination and independence subdivision numbers of graphs, Discuss. Math. Graph Theory 20 (2000) 271-280, doi: 10.7151/dmgt.1126. | Zbl 0984.05066

[003] [4] T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, D.P. Jacobs, J. Knisely and L.C. van der Merwe, Domination Subdivision Numbers, preprint. | Zbl 1006.05042

[004] [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Dekker, New York, 1998). | Zbl 0890.05002

[005] [6] S. Velammal, Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997).