On the structural result on normal plane maps
Tomás Madaras ; Andrea Marcinová
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 293-303 / Harvested from The Polish Digital Mathematics Library

We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by 6+[(2D+12)/(D-2)]((D-1)(t-1)-1). This improves a recent bound 6+[(3D+3)/(D-2)]((D-1)t-1-1), D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270155
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1176,
     author = {Tom\'as Madaras and Andrea Marcinov\'a},
     title = {On the structural result on normal plane maps},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {293-303},
     zbl = {1027.05028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1176}
}
Tomás Madaras; Andrea Marcinová. On the structural result on normal plane maps. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 293-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1176/

[000] [1] P. Baldi, On a generalized family of colourings, Graphs and Combinatorics 6 (1990) 95-110, doi: 10.1007/BF01787722. | Zbl 0716.05018

[001] [2] O. Borodin, Joint generalization of theorems by Lebesgue and Kotzig, Diskret. Mat. 3 (1991) 24-27 (in Russian). | Zbl 0742.05034

[002] [3] O. Borodin, Joint colouring of vertices, edges and faces of plane graphs, Metody Diskret. Analiza 47 (1988) 27-37 (in Russian). | Zbl 0707.05023

[003] [4] M. Fellows, P. Hell and K. Seyffarth, Constructions of dense planar networks, manuscript, 1993.

[004] [5] S. Jendrol' and Z. Skupień, On the vertex/edge distance colourings of planar graphs, Discrete Math. 236 (2001) 167-177.

[005] [6] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Cas. SAV 5 (1955) 233-237 (in Slovak).

[006] [7] F. Kramer and H. Kramer, Un problème de coloration des sommets d'un graphe, C.R. Acad. Sci. Paris Sér. A-B 268 (1969) A46-A48. | Zbl 0165.57302

[007] [8] F. Kramer and H. Kramer, On the generalized chromatic number, in: Combinatorics '84 (Bari, Italy) North-Holland Math. Stud. 123 (North-Holland, Amsterdam-New York, 1986) (and Annals Discrete Math. 30, 1986) 275-284.

[008] [9] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. (9) 19 (1940) 27-43. | Zbl 0024.28701

[009] [10] Z. Skupień, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15 (1995) 89-106, doi: 10.7151/dmgt.1010.

[010] [11] J. van den Heuvel and S. McGuinness, Colouring the Square of a Planar Graph, preprint, 2001. | Zbl 1008.05065

[011] [12] G. Wegner, Graphs with given diameter and a coloring problem (Technical report, University of Dortmund, 1977).