We prove the structural result on normal plane maps, which applies to the vertex distance colouring of plane maps. The vertex distance-t chromatic number of a plane graph G with maximum degree Δ(G) ≤ D, D ≥ 12 is proved to be upper bounded by . This improves a recent bound , D ≥ 8 by Jendrol’ and Skupień, and the upper bound for distance-2 chromatic number.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1176, author = {Tom\'as Madaras and Andrea Marcinov\'a}, title = {On the structural result on normal plane maps}, journal = {Discussiones Mathematicae Graph Theory}, volume = {22}, year = {2002}, pages = {293-303}, zbl = {1027.05028}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1176} }
Tomás Madaras; Andrea Marcinová. On the structural result on normal plane maps. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 293-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1176/
[000] [1] P. Baldi, On a generalized family of colourings, Graphs and Combinatorics 6 (1990) 95-110, doi: 10.1007/BF01787722. | Zbl 0716.05018
[001] [2] O. Borodin, Joint generalization of theorems by Lebesgue and Kotzig, Diskret. Mat. 3 (1991) 24-27 (in Russian). | Zbl 0742.05034
[002] [3] O. Borodin, Joint colouring of vertices, edges and faces of plane graphs, Metody Diskret. Analiza 47 (1988) 27-37 (in Russian). | Zbl 0707.05023
[003] [4] M. Fellows, P. Hell and K. Seyffarth, Constructions of dense planar networks, manuscript, 1993.
[004] [5] S. Jendrol' and Z. Skupień, On the vertex/edge distance colourings of planar graphs, Discrete Math. 236 (2001) 167-177.
[005] [6] A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Cas. SAV 5 (1955) 233-237 (in Slovak).
[006] [7] F. Kramer and H. Kramer, Un problème de coloration des sommets d'un graphe, C.R. Acad. Sci. Paris Sér. A-B 268 (1969) A46-A48. | Zbl 0165.57302
[007] [8] F. Kramer and H. Kramer, On the generalized chromatic number, in: Combinatorics '84 (Bari, Italy) North-Holland Math. Stud. 123 (North-Holland, Amsterdam-New York, 1986) (and Annals Discrete Math. 30, 1986) 275-284.
[008] [9] H. Lebesgue, Quelques conséquences simples de la formule d'Euler, J. Math. Pures Appl. (9) 19 (1940) 27-43. | Zbl 0024.28701
[009] [10] Z. Skupień, Some maximum multigraphs and edge/vertex distance colourings, Discuss. Math. Graph Theory 15 (1995) 89-106, doi: 10.7151/dmgt.1010.
[010] [11] J. van den Heuvel and S. McGuinness, Colouring the Square of a Planar Graph, preprint, 2001. | Zbl 1008.05065
[011] [12] G. Wegner, Graphs with given diameter and a coloring problem (Technical report, University of Dortmund, 1977).