We give several characterisations of strongly projective graphs which generalise in many respects odd cycles and complete graphs [7]. We prove that all known families of projective graphs contain only strongly projective graphs, including complete graphs, odd cycles, Kneser graphs and non-bipartite distance-transitive graphs of diameter d ≥ 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1175, author = {Benoit Larose}, title = {Families of strongly projective graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {22}, year = {2002}, pages = {271-292}, zbl = {1029.05133}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1175} }
Benoit Larose. Families of strongly projective graphs. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 271-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1175/
[000] [1] D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487-495, doi: 10.1002/jgt.3190090409. | Zbl 0664.05019
[001] [2] M. El-Zahar and N. Sauer, The chromatic number of the product of two 4-chromatic graphs is 4, Combinatorica 5 (1985) 121-126, doi: 10.1007/BF02579374. | Zbl 0575.05028
[002] [3] D. Greenwell and L. Lovász, Applications of product colourings, Acta Math. Acad. Sci. Hungar. 25 (1974) 335-340, doi: 10.1007/BF01886093. | Zbl 0294.05108
[003] [4] G. Hahn and C. Tardif, Graph homomorphisms: structure and symmetry, in: G. Hahn and G. Sabidussi, eds, Graph Symmetry, Algebraic Methods and Applications, NATO ASI Ser. C 497 (Kluwer Academic Publishers, Dordrecht, 1997) 107-166.
[004] [5] S. Hazan, On triangle-free projective graphs, Algebra Universalis, 35 (1996) 185-196, doi: 10.1007/BF01195494. | Zbl 0845.05062
[005] [6] W. Imrich and S. Klavžar, Product Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization (John Wiley and Sons, 2000).
[006] [7] B. Larose, Strongly projective graphs, Canad. J. Math. 17 pages, to appear. | Zbl 1020.05029
[007] [8] B. Larose and C. Tardif, Hedetniemi's conjecture and the retracts of products of graphs, Combinatorica 20 (2000) 531-544, doi: 10.1007/s004930070006. | Zbl 0996.05065
[008] [9] B. Larose and C. Tardif, Strongly rigid graphs and projectivity, Mult. Val. Logic, 22 pages, to appear. | Zbl 1009.05121
[009] [10] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, J. Graph Theory, 12 pages, to appear. | Zbl 1003.05077
[010] [11] L. Lovász, Operations with structures, Acta Math. Acad. Sci. Hungar. 18 (1967) 321-328, doi: 10.1007/BF02280291. | Zbl 0174.01401
[011] [12] R.N. McKenzie, G.F. McNulty and W.F. Taylor, Algebras, Lattices and Varieties (Wadsworth and Brooks/Cole, Monterey California, 1987). | Zbl 0611.08001
[012] [13] J. Nesetril, X. Zhu, On sparse graphs with given colorings and homomorphisms, preprint, 13 pages, 2000.
[013] [14] D.H. Smith, Primitive and imprimitive graphs, Quart. J. Math. Oxford (2) 22 (1971) 551-557, doi: 10.1093/qmath/22.4.551. | Zbl 0222.05111
[014] [15] A. Szendrei, Simple surjective algebras having no proper subalgebras, J. Austral. Math. Soc. (Series A) 48 (1990) 434-454, doi: 10.1017/S1446788700029979. | Zbl 0702.08003
[015] [16] C. Tardif, personal communication, 2000.
[016] [17] J.W. Walker, From graphs to ortholattices and equivariant maps, J. Combin. Theory (B) 35 (1983) 171-192, doi: 10.1016/0095-8956(83)90070-9. | Zbl 0509.05059