Generalized chromatic numbers and additive hereditary properties of graphs
Izak Broere ; Samantha Dorfling ; Elizabeth Jonck
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 259-270 / Harvested from The Polish Digital Mathematics Library

An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be additive hereditary properties of graphs. The generalized chromatic number χ() is defined as follows: χ()=n iff ⊆ ⁿ but n-1. We investigate the generalized chromatic numbers of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ and ₖ.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270271
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1174,
     author = {Izak Broere and Samantha Dorfling and Elizabeth Jonck},
     title = {Generalized chromatic numbers and additive hereditary properties of graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {259-270},
     zbl = {1030.05038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1174}
}
Izak Broere; Samantha Dorfling; Elizabeth Jonck. Generalized chromatic numbers and additive hereditary properties of graphs. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 259-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1174/

[000] [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[001] [2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.

[002] [3] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068. | Zbl 0912.05048

[003] [4] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058. | Zbl 0906.05059

[004] [5] S.A. Burr and M.S. Jacobson, On inequalities involving vertex-partition parameters of graphs, Congr. Numer. 70 (1990) 159-170. | Zbl 0697.05046

[005] [6] G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271, doi: 10.1017/S0305004100042808. | Zbl 0173.26204

[006] [7] M. Frick and F. Bullock, Detour chromatic numbers, manuscript. | Zbl 1002.05021

[007] [8] P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász (J.A. University, Szeged, 1984).

[008] [9] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995). | Zbl 0971.05046

[009] [10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#1715. | Zbl 0151.33401

[010] [11] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).

[011] [12] J. Nesetril and V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolinae 17 (1976) 85-95; MR54#173. | Zbl 0344.05150