Some totally modular cordial graphs
Ibrahim Cahit
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 247-258 / Harvested from The Polish Digital Mathematics Library

In this paper we define total magic cordial (TMC) and total sequential cordial (TSC) labellings which are weaker versions of magic and simply sequential labellings of graphs. Based on these definitions we have given several results on TMC and TSC graphs.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270486
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1173,
     author = {Ibrahim Cahit},
     title = {Some totally modular cordial graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {247-258},
     zbl = {1035.05076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1173}
}
Ibrahim Cahit. Some totally modular cordial graphs. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 247-258. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1173/

[000] [1] W. Bange, A.E. Barkauskas and P.J. Slater, Simply sequential and graceful graphs, in: Proc. 10th S-E. Conf. Comb. Graph Theory and Computing (1979) 155-162. | Zbl 0427.05056

[001] [2] W. Bange, A.E. Barkauskas and P.J. Slater, Sequential additive graphs, Discrete Math. 44 (1983) 235-241, doi: 10.1016/0012-365X(83)90187-5. | Zbl 0508.05057

[002] [3] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987) 201-208. | Zbl 0616.05056

[003] [4] I. Cahit, On cordial and 3-equitable labellings of graphs, Utilitas Mathematica 37 (1990) 189-198. | Zbl 0714.05053

[004] [5] J.A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics 5 (1998) 1-43. | Zbl 0953.05067

[005] [6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canadian Math. Bull. 13 (4) 1970 451-461, doi: 10.4153/CMB-1970-084-1. | Zbl 0213.26203

[006] [7] A. Kotzig and A. Rosa, Magic valuations of complete graph (CRM-175, University of Montreal, March 1972).

[007] [8] A. Kotzig, On well spread sets of integers (CRM-161, University of Montreal, February 1972).

[008] [9] A. Kotzig, On magic valuations of trichromatic graphs (CRM-148, University of Montreal, December 1971).

[009] [10] P.J. Slater, On k-sequentially and other numbered graphs, Discrete Math. 34 (1981) 185-193, doi: 10.1016/0012-365X(81)90066-2. | Zbl 0461.05053

[010] [11] Z. Szaniszló, k-equitable labellings of cycles and some other graphs, Ars Combin. 37 (1994) 49-63. | Zbl 0805.05073