Conditions for β-perfectness
Judith Keijsper ; Meike Tewes
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 123-148 / Harvested from The Polish Digital Mathematics Library

A β-perfect graph is a simple graph G such that χ(G') = β(G') for every induced subgraph G' of G, where χ(G') is the chromatic number of G', and β(G') is defined as the maximum over all induced subgraphs H of G' of the minimum vertex degree in H plus 1 (i.e., δ(H)+1). The vertices of a β-perfect graph G can be coloured with χ(G) colours in polynomial time (greedily). The main purpose of this paper is to give necessary and sufficient conditions, in terms of forbidden induced subgraphs, for a graph to be β-perfect. We give new sufficient conditions and make improvements to sufficient conditions previously given by others. We also mention a necessary condition which generalizes the fact that no β-perfect graph contains an even hole.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270446
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1163,
     author = {Judith Keijsper and Meike Tewes},
     title = {Conditions for $\beta$-perfectness},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {123-148},
     zbl = {1010.05032},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1163}
}
Judith Keijsper; Meike Tewes. Conditions for β-perfectness. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 123-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1163/

[000] [1] L.W. Beineke, Characterizations of derived graphs, J. Combin. Theory 9 (1970) 129-135, doi: 10.1016/S0021-9800(70)80019-9. | Zbl 0202.55702

[001] [2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X. | Zbl 0027.26403

[002] [3] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vusković, Finding an even hole in a graph, in: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (1997) 480-485, doi: 10.1109/SFCS.1997.646136.

[003] [4] G.A. Dirac, On rigid circuit graphs, Abh. Math. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776. | Zbl 0098.14703

[004] [5] P. Erdős and A. Hajnal, On the chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar. 17 (1966) 61-99, doi: 10.1007/BF02020444. | Zbl 0151.33701

[005] [6] C. Figueiredo and K. Vusković, A class of β-perfect graphs, Discrete Math. 216 (2000) 169-193, doi: 10.1016/S0012-365X(99)00240-X. | Zbl 0952.05028

[006] [7] H.-J. Finck and H. Sachs, Über eine von H.S. Wilf angegebene Schranke für die chromatische Zahl endlicher Graphen, Math. Nachr. 39 (1969) 373-386, doi: 10.1002/mana.19690390415. | Zbl 0172.25704

[007] [8] T.R. Jensen and B. Toft, Graph colouring problems (Wiley, New York, 1995). | Zbl 0971.05046

[008] [9] S.E. Markossian, G.S. Gasparian and B.A. Reed, β-perfect graphs, J. Combin. Theory (B) 67 (1996) 1-11, doi: 10.1006/jctb.1996.0030. | Zbl 0857.05038