A short proof of the classical theorem of Menger concerning the number of disjoint AB-paths of a finite graph for two subsets A and B of its vertex set is given. The main idea of the proof is to contract an edge of the graph.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1161, author = {Frank G\"oring}, title = {A proof of menger's theorem by contraction}, journal = {Discussiones Mathematicae Graph Theory}, volume = {22}, year = {2002}, pages = {111-112}, zbl = {1017.05065}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1161} }
Frank Göring. A proof of menger's theorem by contraction. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 111-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1161/
[000] [1] T. Böhme, F. Göring and J. Harant, Menger's Theorem, J. Graph Theory 37 (2001) 35-36, doi: 10.1002/jgt.1001. | Zbl 0988.05057
[001] [2] W. McCuaig, A simple proof of Menger's theorem, J. Graph Theory 8 (1984) 427-429, doi: 10.1002/jgt.3190080311. | Zbl 0545.05042
[002] [3] R. Diestel, Graph Theory (2nd edition), (Springer-Verlag, New York, 2000).
[003] [4] G.A. Dirac, Short proof of Menger's graph theorem, Mathematika 13 (1966) 42-44, doi: 10.1112/S0025579300004162. | Zbl 0144.45102
[004] [5] F. Goering, Short Proof of Menger's Theorem, to appear in Discrete Math.
[005] [6] T. Grünwald (later Gallai), Ein neuer Beweis eines Mengerschen Satzes, J. London Math. Soc. 13 (1938) 188-192, doi: 10.1112/jlms/s1-13.3.188. | Zbl 0019.23701
[006] [7] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 96-115.
[007] [8] J.S. Pym, A proof of Menger's theorem, Monatshefte Math. 73 (1969) 81-88. | Zbl 0176.22502