Some news about oblique graphs
Andrey A. Dobrynin ; Leonid S. Melnikov ; Jens Schreyer ; Hansjoachim Walther
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 39-50 / Harvested from The Polish Digital Mathematics Library

A k-gon α of a polyhedral graph G(V,E,F) is of type ⟨b₁,b₂,...,bₖ⟩ if the vertices incident with α in cyclic order have degrees b₁,b₂,...,bₖ and ⟨b₁,b₂,...,bₖ⟩ is the lexicographic minimum of all such sequences available for α. A polyhedral graph G is oblique if it has no two faces of the same type. Among others it is shown that an oblique graph contains vertices of degree 3.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270516
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1157,
     author = {Andrey A. Dobrynin and Leonid S. Melnikov and Jens Schreyer and Hansjoachim Walther},
     title = {Some news about oblique graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {39-50},
     zbl = {1011.05040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1157}
}
Andrey A. Dobrynin; Leonid S. Melnikov; Jens Schreyer; Hansjoachim Walther. Some news about oblique graphs. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 39-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1157/

[000] [1] O. Borodin, Structural properties of planar maps with the minimum degree 5, Math. Nachr. 158 (1992) 109-117, doi: 10.1002/mana.19921580108. | Zbl 0776.05035

[001] [2] B. Grünbaum and C.J. Shephard, Spherical tilings with transitivity properties, in: Geometrie (Springer-Verlag, 1982) 65-98. | Zbl 0501.51012

[002] [3] M. Voigt and H. Walther, Polyhedral graphs with restricted number of faces of the same type, Preprint No. M22/99, Technical University Ilmenau (submitted to Discr. Math.). | Zbl 0995.05039

[003] [4] H. Walther, Polyhedral graphs with extreme numbers of types of faces, Preprint No. M13/99, Technical University Ilmenau (submitted to Appl. Discr. Math.). | Zbl 1072.05539