Weakly P-saturated graphs
Mieczysław Borowiecki ; Elżbieta Sidorowicz
Discussiones Mathematicae Graph Theory, Tome 22 (2002), p. 17-29 / Harvested from The Polish Digital Mathematics Library

For a hereditary property let k(G) denote the number of forbidden subgraphs contained in G. A graph G is said to be weakly -saturated, if G has the property and there is a sequence of edges of G̅, say e,e,...,el, such that the chain of graphs G=GG0+eG+e...Gl-1+el=Gl=Kn(Gi+1=Gi+ei+1) has the following property: k(Gi+1)>k(Gi), 0 ≤ i ≤ l-1. In this paper we shall investigate some properties of weakly saturated graphs. We will find upper bound for the minimum number of edges of weakly ₖ-saturated graphs of order n. We shall determine the number wsat(n,) for some hereditary properties.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:270559
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1155,
     author = {Mieczys\l aw Borowiecki and El\.zbieta Sidorowicz},
     title = {Weakly P-saturated graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {22},
     year = {2002},
     pages = {17-29},
     zbl = {1016.05044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1155}
}
Mieczysław Borowiecki; Elżbieta Sidorowicz. Weakly P-saturated graphs. Discussiones Mathematicae Graph Theory, Tome 22 (2002) pp. 17-29. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1155/

[000] [1] B. Bollobás, Weakly k-saturated graphs, in: H. Sachs, H.-J. Voss and H. Walther, eds, Proc. Beiträge zur Graphentheorie, Manebach, 9-12 May, 1967 (Teubner Verlag, Leipzig, 1968) 25-31.

[001] [2] P. Erdős, A. Hajnal and J.W. Moon, A Problem in Graph Theory, Amer. Math. Monthly 71 (1964) 1107-1110, doi: 10.2307/2311408. | Zbl 0126.39401

[002] [3] R. Lick and A. T. White, k-degenerated graphs, Canadian J. Math. 22 (1970) 1082-1096, doi: 10.4153/CJM-1970-125-1. | Zbl 0202.23502

[003] [4] P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37 (1981) 123-126, doi: 10.1016/0012-365X(81)90146-1. | Zbl 0471.05038

[004] [5] G. Kalai, Weakly saturated graphs are rigid, Annals of Discrete Math. 20 (1984) 189-190. | Zbl 0576.05018

[005] [6] P. Turán, On the Theory of Graphs, Colloq. Math. 3 (1954) 19-30. | Zbl 0055.17004