Colouring graphs with prescribed induced cycle lengths
Bert Randerath ; Ingo Schiermeyer
Discussiones Mathematicae Graph Theory, Tome 21 (2001), p. 267-281 / Harvested from The Polish Digital Mathematics Library

In this paper we study the chromatic number of graphs with two prescribed induced cycle lengths. It is due to Sumner that triangle-free and P₅-free or triangle-free, P₆-free and C₆-free graphs are 3-colourable. A canonical extension of these graph classes is I(4,5), the class of all graphs whose induced cycle lengths are 4 or 5. Our main result states that all graphs of I(4,5) are 3-colourable. Moreover, we present polynomial time algorithms to 3-colour all triangle-free graphs G of this kind, i.e., we have polynomial time algorithms to 3-colour every GI(n,n) with n₁,n₂ ≥ 4 (see Table 1). Furthermore, we consider the related problem of finding a χ-binding function for the class I(n,n). Here we obtain the surprising result that there exists no linear χ-binding function for I(3,4).

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:270350
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1149,
     author = {Bert Randerath and Ingo Schiermeyer},
     title = {Colouring graphs with prescribed induced cycle lengths},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {21},
     year = {2001},
     pages = {267-281},
     zbl = {1002.05026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1149}
}
Bert Randerath; Ingo Schiermeyer. Colouring graphs with prescribed induced cycle lengths. Discussiones Mathematicae Graph Theory, Tome 21 (2001) pp. 267-281. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1149/

[000] [1] J.A. Bondy and U.S.R. Murty, Graph Theory and Applications (Macmillan, London and Elsevier, New York, 1976). | Zbl 1226.05083

[001] [2] A. Brandstädt, Van Bang Le and J.P. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics and Applications (SIAM, Philadelphia, PA, 1999). | Zbl 0919.05001

[002] [3] S. Brandt, Triangle-free graphs without forbidden subgraphs, Electronic Notes in Discrete Math. Vol. 3. | Zbl 1039.05508

[003] [4] P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38, doi: 10.4153/CJM-1959-003-9.

[004] [5] P. Erdős, Some of my favourite unsolved problems, in: A. Baker, B. Bollobás and A. Hajnal, eds. A tribute to Paul Erdős (Cambridge Univ. Press, Cambridge, 1990) 467. | Zbl 0709.11003

[005] [6] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastos. Mat. XIX (1987) 413-441. | Zbl 0718.05041

[006] [7] A. Gyárfás, Graphs with k odd cycle lengths, Discrete Math. 103 (1992) 41-48, doi: 10.1016/0012-365X(92)90037-G. | Zbl 0773.05072

[007] [8] T.R. Jensen, B.Toft, Graph Colouring problems (Wiley-Interscience Publications, New York, 1995). | Zbl 0971.05046

[008] [9] S.E. Markossian, G.S. Gasparian and B.A. Reed, β-Perfect Graphs, J. Combin. Theory (B) 67 (1996) 1-11, doi: 10.1006/jctb.1996.0030. | Zbl 0857.05038

[009] [10] P. Mihók and I. Schiermeyer, Chromatic number of classes of graphs with prescribed cycle lengths, submitted.

[010] [11] I. Rusu, Berge graphs with chordless cycles of bounded length, J. Graph Theory 32 (1999) 73-79, doi: 10.1002/(SICI)1097-0118(199909)32:1<73::AID-JGT7>3.0.CO;2-7 | Zbl 0929.05035

[011] [12] A.D. Scott, Induced Cycles and Chromatic Number, J. Combin. Theory (B) 76 (1999) 70-75, doi: 10.1006/jctb.1998.1894. | Zbl 0936.05041

[012] [13] D.P. Sumner, Subtrees of a Graph and the Chromatic Number, in: G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, and D.R. Lick, eds, The Theory and Applications of Graphs, Proc. 4th International Graph Theory Conference (Kalamazoo, Michigan, 1980) 557-576, (Wiley, New York, 1981).