On varieties of orgraphs
Alfonz Haviar ; Gabriela Monoszová
Discussiones Mathematicae Graph Theory, Tome 21 (2001), p. 207-221 / Harvested from The Polish Digital Mathematics Library

In this paper we investigate varieties of orgraphs (that is, oriented graphs) as classes of orgraphs closed under isomorphic images, suborgraph identifications and induced suborgraphs, and we study the lattice of varieties of tournament-free orgraphs.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:270761
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1144,
     author = {Alfonz Haviar and Gabriela Monoszov\'a},
     title = {On varieties of orgraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {21},
     year = {2001},
     pages = {207-221},
     zbl = {1002.05031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1144}
}
Alfonz Haviar; Gabriela Monoszová. On varieties of orgraphs. Discussiones Mathematicae Graph Theory, Tome 21 (2001) pp. 207-221. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1144/

[000] [1] B. Bollobás, Extremal Graph Theory (Academic press, London, New York, San Francisco, 1978). | Zbl 0419.05031

[001] [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semani sin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026

[002] [3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in graph theory (Vishwa Inter. Publ., Gulbarga, 1991) 41-68.

[003] [4] S. Buris and H.P. Sankappanavar, A Course in Universal Algebra (Springer-Verlag, New York, Heidelberg, Berlin, 1981).

[004] [5] G. Chartrand, O.R. Oellermann, Applied and Algorithmic Graph Theory (Mc Graw-Hill, 1993).

[005] [6] R. Diestel, Graph Theory (Springer-Verlag New York, 1997).

[006] [7] D. Duffus and I. Rival, A structure theory for ordered sets, Discrete Math. 35 (1981) 53-118, doi: 10.1016/0012-365X(81)90201-6.

[007] [8] A. Haviar and R. Nedela, On varieties of graphs, Discuss. Math. Graph Theory 18 (1998) 209-223, doi: 10.7151/dmgt.1077. | Zbl 0926.05033

[008] [9] A. Haviar, The lattice of varieties of graphs, Acta Univ. M. Belii, ser. Math. 8 (2000) 11-19. | Zbl 0988.05089

[009] [10] P. Mihók and R. Vasky, Hierarchical Decompositions of Diagrams in Information System Analysis and Lattices of Hereditary Properties of Graphs, Proceedings of ISCM Herlany 1999, ed. A. Has cák, V. Pirc, V. Soltés (University of Technology, Košice, 2000) 126-129. | Zbl 0966.94001

[010] [11] E.R. Scheinerman, On the structure of hereditary classes of graphs, J. Graph Theory 10 (1986) 545-551. | Zbl 0609.05057