We show that for every integer k ≥ 2 and every k graphs G₁,G₂,...,Gₖ, there exists a hull graph with k hull vertices v₁,v₂,...,vₖ such that link for 1 ≤ i ≤ k. Moreover, every pair a, b of integers with 2 ≤ a ≤ b is realizable as the hull number and geodetic number (or upper geodetic number) of a hull graph. We also show that every pair a,b of integers with a ≥ 2 and b ≥ 0 is realizable as the hull number and forcing geodetic number of a hull graph.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1131, author = {Gary Chartrand and Ping Zhang}, title = {On graphs with a unique minimum hull set}, journal = {Discussiones Mathematicae Graph Theory}, volume = {21}, year = {2001}, pages = {31-42}, zbl = {0987.05046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1131} }
Gary Chartrand; Ping Zhang. On graphs with a unique minimum hull set. Discussiones Mathematicae Graph Theory, Tome 21 (2001) pp. 31-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1131/
[000] [1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990). | Zbl 0688.05017
[001] [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, to appear. | Zbl 0987.05047
[002] [3] G. Chartrand, F. Harary and P. Zhang, On the hull number of a graph, Ars Combin. 57 (2000) 129-138. | Zbl 1064.05049
[003] [4] G. Chartrand and P. Zhang, The geodetic number of an oriented graph, European J. Combin. 21 (2) (2000) 181-189, doi: 10.1006/eujc.1999.0301. | Zbl 0941.05033
[004] [5] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58, doi: 10.7151/dmgt.1084. | Zbl 0927.05025
[005] [6] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. to appear. | Zbl 1006.05022
[006] [7] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8. | Zbl 0584.05044
[007] [8] F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geom. 16 (1981) 185-190. | Zbl 0493.05037
[008] [9] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Mathl. Comput. Modelling. 17 (11) (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2. | Zbl 0825.68490
[009] [10] H.M. Mulder, The Interval Function of a Graph (Methematisch Centrum, Amsterdam, 1980).
[010] [11] H.M. Mulder, The expansion procedure for graphs, in: Contemporary Methods in Graph Theory ed., R. Bodendiek (Wissenschaftsverlag, Mannheim, 1990) 459-477. | Zbl 0744.05064
[011] [12] L. Nebeský, A characterization of the interval function of a connected graph, Czech. Math. J. 44 (119) (1994) 173-178. | Zbl 0808.05046
[012] [13] L. Nebeský, Characterizing of the interval function of a connected graph, Math. Bohem. 123 (1998) 137-144. | Zbl 0937.05036