A dominating set D for a graph G is a subset of V(G) such that any vertex in V(G)-D has a neighbor in D, and a domination number γ(G) is the size of a minimum dominating set for G. For the Cartesian product G ⃞ H Vizing's conjecture [10] states that γ(G ⃞ H) ≥ γ(G)γ(H) for every pair of graphs G,H. In this paper we introduce a new concept which extends the ordinary domination of graphs, and prove that the conjecture holds when γ(G) = γ(H) = 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1129, author = {Bostjan Bresar}, title = {On Vizing's conjecture}, journal = {Discussiones Mathematicae Graph Theory}, volume = {21}, year = {2001}, pages = {5-11}, zbl = {0989.05084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1129} }
Bostjan Bresar. On Vizing's conjecture. Discussiones Mathematicae Graph Theory, Tome 21 (2001) pp. 5-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1129/
[000] [1] A.M. Barcalkin and L.F. German, The external stability number of the Cartesian product of graphs, Bul. Acad. Stiinte RSS Moldovenesti 1 (1979) 5-8.
[001] [2] T.Y. Chang and W.Y. Clark, The domination number of the 5×n and 6×n grid graphs, J. Graph Theory 17 (1993) 81-107, doi: 10.1002/jgt.3190170110. | Zbl 0780.05030
[002] [3] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227. | Zbl 0746.05067
[003] [4] R.J. Faudree, R.H. Schelp, W.E. Shreve, The domination number for the product of graphs, Congr. Numer. 79 (1990) 29-33. | Zbl 0862.05060
[004] [5] D.C. Fisher, Domination, fractional domination, 2-packing, and graph products, SIAM J. Discrete Math. 7 (1994) 493-498, doi: 10.1137/S0895480191217806. | Zbl 0812.05030
[005] [6] B. Hartnell and D.F. Rall, Vizing's conjecture and the one-half argument, Discuss. Math. Graph Theory 15 (1995) 205-216, doi: 10.7151/dmgt.1018. | Zbl 0845.05074
[006] [7] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin. 18 (1983) 33-44. | Zbl 0566.05050
[007] [8] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs II: Trees, J. Graph Theory 10 (1986) 97-106, doi: 10.1002/jgt.3190100112. | Zbl 0584.05053
[008] [9] S. Klavžar and N. Seifter, Dominating Cartesian product of cycles, Discrete Appl. Math. 59 (1995) 129-136, doi: 10.1016/0166-218X(93)E0167-W. | Zbl 0824.05037
[009] [10] V.G. Vizing, The Cartesian product of graphs, Vycisl. Sist. 9 (1963) 30-43.