In this paper we present some hypergraphs which are chromatically characterized by their chromatic polynomials. It occurs that these hypergraphs are chromatically unique. Moreover we give some equalities for the chromatic polynomials of hypergraphs generalizing known results for graphs and hypergraphs of Read and Dohmen.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1128, author = {Mieczys\l aw Borowiecki and Ewa \L azuka}, title = {Chromatic polynomials of hypergraphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {20}, year = {2000}, pages = {293-301}, zbl = {0979.05044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1128} }
Mieczysław Borowiecki; Ewa Łazuka. Chromatic polynomials of hypergraphs. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 293-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1128/
[000] [1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).
[001] [2] C.Y. Chao and E.G. Whitehead Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131, doi: 10.1007/BFb0070369.
[002] [3] K. Dohmen, Chromatische Polynome von Graphen und Hypergraphen, Dissertation (Düsseldorf, 1993).
[003] [4] T. Helgason, Aspects of the theory of hypermatroids, in: C. Berge and D. Ray-Chaudhuri, eds., Hypergraph Seminar, Ohio State University 1972, Lecture Notes in Mathematics 411 (Springer-Verlag, 1974) 191-213.
[004] [5] R.P. Jones, Some results of chromatic hypergraph theory proved by 'reduction to graphs', Colloque CNRS. Problémes Combinatoires et Théorie des Graphes 260 (1976) 249-250.
[005] [6] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0. | Zbl 0173.26203
[006] [7] I. Tomescu, Chromatic coefficients of linear uniform hypergraphs, J. Combin. Theory (B) 260 (1998) 229-235, doi: 10.1006/jctb.1997.1811. | Zbl 0914.05024