Sum labellings of cycle hypergraphs
Hanns-Martin Teichert
Discussiones Mathematicae Graph Theory, Tome 20 (2000), p. 255-265 / Harvested from The Polish Digital Mathematics Library

A hypergraph is a sum hypergraph iff there are a finite S ⊆ IN⁺ and d̲, [d̅] ∈ IN⁺ with 1 < d̲ ≤ [d̅] such that is isomorphic to the hypergraph d̲,[d̅](S)=(V,) where V = S and =eS:d̲|e|[d̅]vevS. For an arbitrary hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices y,...,yσV such that y,...,yσ is a sum hypergraph. Generalizing the graph Cₙ we obtain d-uniform hypergraphs where any d consecutive vertices of Cₙ form an edge. We determine sum numbers and investigate properties of sum labellings for this class of cycle hypergraphs.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:270630
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1124,
     author = {Hanns-Martin Teichert},
     title = {Sum labellings of cycle hypergraphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {20},
     year = {2000},
     pages = {255-265},
     zbl = {0982.05070},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1124}
}
Hanns-Martin Teichert. Sum labellings of cycle hypergraphs. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 255-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1124/

[000] [1] C. Berge, Hypergraphs, (North Holland, Amsterdam - New York - Oxford - Tokyo, 1989).

[001] [2] J.C. Bermond, A. Germa, M.C. Heydemann and D. Sotteau, Hypergraphes hamiltoniens, Probl. Comb. et Théorie des Graphes, Orsay 1976, Colloques int. CNRS 260 (1978) 39-43.

[002] [3] F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108.

[003] [4] F. Harary, Sum graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U. | Zbl 0797.05069

[004] [5] G.Y. Katona and H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999) 205-212, doi: 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.0.CO;2-O | Zbl 0924.05050

[005] [6] M. Miller, J.F. Ryan and W.F. Smyth, The Sum Number of the cocktail party graph, Bull. of the ICA 22 (1998) 79-90. | Zbl 0894.05048

[006] [7] A. Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab. Gulf J. Scient. Res. 14 (1996) 1-14. | Zbl 0856.05088

[007] [8] M. Sonntag, Antimagic and supermagic vertex-labelling of hypergraphs, Techn. Univ. Bergakademie Freiberg, Preprint 99-5 (1999).

[008] [9] H.-M. Teichert, Classes of hypergraphs with sum number one, Discuss. Math. Graph Theory 20 (2000) 93-103, doi: 10.7151/dmgt.1109. | Zbl 0959.05078