The aim of the paper is to give an effective formula for the calculation of the probability that a random subset of an affine geometry AG(r-1,q) has rank r. Tables for the probabilities are given for small ranks. The expected time to the first moment at which a random subset of an affine geometry achieves the rank r is derived.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1120, author = {Wojciech Kordecki}, title = {On the rank of random subsets of finite affine geometry}, journal = {Discussiones Mathematicae Graph Theory}, volume = {20}, year = {2000}, pages = {209-217}, zbl = {0982.05029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1120} }
Wojciech Kordecki. On the rank of random subsets of finite affine geometry. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 209-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1120/
[000] [1] C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs (CRC Press, Boca Raton, 1996). | Zbl 0836.00010
[001] [2] W. Kordecki, On the rank of a random submatroid of projective geometry, in: Random Graphs, Proc. of Random Graphs 2 (Poznań 1989, Wiley, 1992) 151-163. | Zbl 0816.60012
[002] [3] W. Kordecki, Random matroids, Dissert. Math. CCCLXVII (PWN, Warszawa, 1997). | Zbl 0934.05034
[003] [4] W. Kordecki, Reliability bounds for multistage structures with independent components, Statist. Probab. Lett. 34 (1997) 43-51, doi: 10.1016/S0167-7152(96)00164-2. | Zbl 0899.62129
[004] [5] M.V. Lomonosov, Bernoulli scheme with closure, Probl. Inf. Transmission 10 (1974) 73-81. | Zbl 0316.05020
[005] [6] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
[006] [7] B. Voigt, On the evolution of finite affine and projective spaces, Math. Oper. Res. 49 (1986) 313-327. | Zbl 0583.06006
[007] [8] D.J.A. Welsh, Matroid Theory (Academic Press, London, 1976).