Note on the weight of paths in plane triangulations of minimum degree 4 and 5
Tomás Madaras
Discussiones Mathematicae Graph Theory, Tome 20 (2000), p. 173-180 / Harvested from The Polish Digital Mathematics Library

The weight of a path in a graph is defined to be the sum of degrees of its vertices in entire graph. It is proved that each plane triangulation of minimum degree 5 contains a path P₅ on 5 vertices of weight at most 29, the bound being precise, and each plane triangulation of minimum degree 4 contains a path P₄ on 4 vertices of weight at most 31.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:270652
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1117,
     author = {Tom\'as Madaras},
     title = {Note on the weight of paths in plane triangulations of minimum degree 4 and 5},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {20},
     year = {2000},
     pages = {173-180},
     zbl = {0982.05043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1117}
}
Tomás Madaras. Note on the weight of paths in plane triangulations of minimum degree 4 and 5. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 173-180. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1117/

[000] [1] K. Ando, S. Iwasaki and A. Kaneko, Every 3-connected planar graph has a connected subgraph with small degree sum, Annual Meeting of the Mathematical Society of Japan, 1993 (in Japanese).

[001] [2] O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Mat. Zametki 46 (5) (1989) 9-12. | Zbl 0694.05027

[002] [3] O.V. Borodin, Minimal vertex degree sum of a 3-path in plane maps, Discuss. Math. Graph Theory 17 (1997) 279-284, doi: 10.7151/dmgt.1055. | Zbl 0906.05017

[003] [4] O.V. Borodin and D.R. Woodall, Short cycles of low weight in normal plane maps with minimum degree 5, Discuss. Math. Graph Theory 18 (1998) 159-164, doi: 10.7151/dmgt.1071. | Zbl 0927.05069

[004] [5] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs and Combinatorics 13 (1997) 245-250. | Zbl 0891.05025

[005] [6] I. Fabrici and S. Jendrol', Subgraphs with restricted degrees of their vertices in planar graphs, Discrete Math. 191 (1998) 83-90, doi: 10.1016/S0012-365X(98)00095-8. | Zbl 0956.05059

[006] [7] I. Fabrici, E. Hexel, S. Jendrol' and H. Walther, On vertex-degree restricted paths in polyhedral graphs, Discrete Math. 212 (2000) 61-73, doi: 10.1016/S0012-365X(99)00209-5. | Zbl 0946.05047

[007] [8] P. Franklin, The four color problem, Amer. J. Math. 44 (1922) 225-236, doi: 10.2307/2370527. | Zbl 48.0664.02

[008] [9] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16 (1996) 207-217, doi: 10.7151/dmgt.1035. | Zbl 0877.05050

[009] [10] E. Jucovic, Convex polytopes (Veda, Bratislava, 1981). | Zbl 0468.52007

[010] [11] T. Madaras, Note on weights of paths in polyhedral graphs, Discrete Math. 203 (1999) 267-269, doi: 10.1016/S0012-365X(99)00052-7. | Zbl 0934.05079

[011] [12] B. Mohar, Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34 (2000) 170-179, doi: 10.1002/1097-0118(200006)34:2<170::AID-JGT6>3.0.CO;2-P | Zbl 0946.05034

[012] [13] P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904) 413-426, doi: 10.1007/BF01444968. | Zbl 35.0511.01