A property of graphs is any class of graphs closed under isomorphism. A property of graphs is induced-hereditary and additive if it is closed under taking induced subgraphs and disjoint unions of graphs, respectively. Let ₁,₂, ...,ₙ be properties of graphs. A graph G is (₁,₂,...,ₙ)-partitionable (G has property ₁ º₂ º... ºₙ) if the vertex set V(G) of G can be partitioned into n sets V₁,V₂,..., Vₙ such that the subgraph of G induced by Vi belongs to ; i = 1,2,...,n. A property is said to be reducible if there exist properties ₁ and ₂ such that = ₁ º₂; otherwise the property is irreducible. We prove that every additive and induced-hereditary property is uniquely factorizable into irreducible factors. Moreover the unique factorization implies the existence of uniquely (₁,₂, ...,ₙ)-partitionable graphs for any irreducible properties ₁,₂, ...,ₙ.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1114, author = {Peter Mih\'ok}, title = {Unique factorization theorem}, journal = {Discussiones Mathematicae Graph Theory}, volume = {20}, year = {2000}, pages = {143-154}, zbl = {0968.05032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1114} }
Peter Mihók. Unique factorization theorem. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 143-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1114/
[000] [1] D. Achlioptas, J.I. Brown, D.G. Corneil and M.S.O. Molloy, The existence of uniquely -G colourable graphs, Discrete Math. 179 (1998) 1-11, doi: 10.1016/S0012-365X(97)00022-8. | Zbl 0885.05062
[001] [2] A. Berger, Reducible properties have infinitely many minimal forbidden subgraphs, manuscript.
[002] [3] B. Bollobás and A.G. Thomason, Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nesetril, eds., The mathematics of Paul Erdős, II, Algorithms and Combinatorics vol. 14 (Springer-Verlag, 1997), 70-78. | Zbl 0866.05030
[003] [4] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026
[004] [5] I. Broere, J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mountains Math. Publications 18 (1999) 79-87. | Zbl 0951.05034
[005] [6] E.J. Cockayne, Color clasess for r-graphs, Canad. Math. Bull. 15 (3) (1972) 349-354, doi: 10.4153/CMB-1972-063-2. | Zbl 0254.05106
[006] [7] R.L. Graham, M. Grötschel and L. Lovász, Handbook of combinatorics (Elsevier Science B.V., Amsterdam, 1995). | Zbl 0833.05001
[007] [8] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995). | Zbl 0971.05046
[008] [9] J. Kratochvíl, P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X. | Zbl 0949.05025
[009] [10] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985), 49-58. | Zbl 0623.05043
[010] [11] P. Mihók and R. Vasky, On the factorization of reducible properties of graphs into irreducible factors, Discuss. Math. Graph Theory 15 (1995) 195-203, doi: 10.7151/dmgt.1017. | Zbl 0845.05076
[011] [12] P. Mihók, Reducible properties and uniquely partitionable graphs, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 49 (1999) 213-218. | Zbl 0937.05042
[012] [13] P. Mihók, G. Semanišin and R. Vasky, Additive and Hereditary Properties of Graphs are Uniquely Factorizable into Irreducible Factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:1<44::AID-JGT5>3.0.CO;2-O | Zbl 0942.05056
[013] [14] G. Semanišin, On generating sets of induced-hereditary properties, manuscript. | Zbl 1018.05089