A tournament is said to be tight whenever every 3-colouring of its vertices using the 3 colours, leaves at least one cyclic triangle all whose vertices have different colours. In this paper, we extend the class of known tight circulant tournaments.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1111, author = {Hortensia Galeana-S\'anchez and V\'\i ctor Neumann-Lara}, title = {A class of tight circulant tournaments}, journal = {Discussiones Mathematicae Graph Theory}, volume = {20}, year = {2000}, pages = {109-128}, zbl = {0969.05031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1111} }
Hortensia Galeana-Sánchez; Víctor Neumann-Lara. A class of tight circulant tournaments. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 109-128. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1111/
[000] [1] B. Abrego, J.L. Arocha, S. Fernández Merchant and V. Neumann-Lara, Tightness problems in the plane, Discrete Math. 194 (1999) 1-11, doi: 10.1016/S0012-365X(98)00031-4. | Zbl 0931.05030
[001] [2] J.L. Arocha, J. Bracho and V. Neumann-Lara, On the minimum size of tight hypergraphs, J. Graph Theory 16 (1992) 319-326, doi: 10.1002/jgt.3190160405. | Zbl 0776.05079
[002] [3] J.L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulated surfaces, J. Combin. Theory (B) 63 (1995) 185-199, doi: 10.1006/jctb.1995.1015. | Zbl 0832.05035
[003] [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier Pub. Co., 1976). | Zbl 1226.05083
[004] [5] V. Neumann-Lara, The acyclic disconnection of a digraph, Discrete Math. 197-198 (1999) 617-632. | Zbl 0928.05033
[005] [6] V. Neumann-Lara and M.A. Pizana, Externally loose k-dichromatic tournaments, in preparation.