Classes of hypergraphs with sum number one
Hanns-Martin Teichert
Discussiones Mathematicae Graph Theory, Tome 20 (2000), p. 93-103 / Harvested from The Polish Digital Mathematics Library

A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 < d̲ < d̅ such that ℋ is isomorphic to the hypergraph d̲,d̅(S)=(V,) where V = S and =eS:d̲<|e|<d̅vevS. For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices w,...,wσV such that w,...,wσ is a sum hypergraph. For graphs it is known that cycles Cₙ and wheels Wₙ have sum numbersgreater than one. Generalizing these graphs we prove for the hypergraphs ₙ and ₙ that under a certain condition for the edgecardinalities (ₙ)= (ₙ)=1

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:270220
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1109,
     author = {Hanns-Martin Teichert},
     title = {Classes of hypergraphs with sum number one},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {20},
     year = {2000},
     pages = {93-103},
     zbl = {0959.05078},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1109}
}
Hanns-Martin Teichert. Classes of hypergraphs with sum number one. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 93-103. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1109/

[000] [1] C. Berge, Hypergraphs (North Holland, Amsterdam-New York-Oxford-Tokyo, 1989).

[001] [2] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski and J. Wiener, The Sum Number of a Complete Graph, Bull. Malaysian Math. Soc. (Second Series) 12 (1989) 25-28. | Zbl 0702.05072

[002] [3] M.N. Ellingham, Sum graphs from trees, Ars Combin. 35 (1993) 335-349. | Zbl 0779.05042

[003] [4] F. Harary, Sum Graphs and Difference Graphs, Congressus Numerantium 72 (1990) 101-108.

[004] [5] F. Harary, Sum Graphs over all the integers, Discrete Math. 124 (1994)99-105, doi: 10.1016/0012-365X(92)00054-U. | Zbl 0797.05069

[005] [6] N. Hartsfield and W.F. Smyth, The Sum Number of Complete Bipartite Graphs, in: R. Rees, ed., Graphs and Matrices (Marcel Dekker, New York, 1992) 205-211. | Zbl 0791.05090

[006] [7] N. Hartsfield and W.F. Smyth, A family of sparse graphs with large sum number, Discrete Math. 141 (1995) 163-171, doi: 10.1016/0012-365X(93)E0196-B. | Zbl 0827.05048

[007] [8] M. Miller, Slamin, J. Ryan, W.F. Smyth, Labelling Wheels for Minimum Sum Number, J. Comb. Math. and Comb. Comput. 28 (1998) 289-297. | Zbl 0918.05091

[008] [9] M. Sonntag and H.-M. Teichert, Sum numbers of hypertrees, Discrete Math. 214 (2000) 285-290, doi: 10.1016/S0012-365X(99)00307-6. | Zbl 0943.05071

[009] [10] M. Sonntag and H.-M. Teichert, On the sum number and integral sum number of hypertrees and complete hypergraphs, Proc. 3rd Krakow Conf. on Graph Theory (1997), to appear.

[010] [11] H.-M. Teichert, The sum number of d-partite complete hypergraphs, Discuss. Math. Graph Theory 19 (1999) 79-91, doi: 10.7151/dmgt.1087. | Zbl 0933.05104