For a finite undirected graph G on n vertices some continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the independence number of G.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1107, author = {Jochen Harant}, title = {Some news about the independence number of a graph}, journal = {Discussiones Mathematicae Graph Theory}, volume = {20}, year = {2000}, pages = {71-79}, zbl = {0971.05058}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1107} }
Jochen Harant. Some news about the independence number of a graph. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 71-79. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1107/
[000] [1] E. Bertram, P. Horak, Lower bounds on the independence number, Geombinatorics, (V) 3 (1996) 93-98. | Zbl 0972.05024
[001] [2] R. Boppana, M.M. Halldorsson, Approximating maximum independent sets by excluding subgraphs, BIT 32 (1992) 180-196, doi: 10.1007/BF01994876. | Zbl 0761.68044
[002] [3] Y. Caro, New results on the independence number (Technical Report, Tel-Aviv University, 1979).
[003] [4] S. Fajtlowicz, On the size of independent sets in graphs, in: Proc. 9th S-E Conf. on Combinatorics, Graph Theory and Computing (Boca Raton 1978) 269-274. | Zbl 0434.05044
[004] [5] S. Fajtlowicz, Independence, clique size and maximum degree, Combinatorica 4 (1984) 35-38, doi: 10.1007/BF02579154. | Zbl 0576.05025
[005] [6] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979). | Zbl 0411.68039
[006] [7] M.M. Halldorsson, J. Radhakrishnan, Greed is good: Approximating independent sets in sparse and bounded-degree graphs, Algorithmica 18 (1997) 145-163, doi: 10.1007/BF02523693. | Zbl 0866.68077
[007] [8] J. Harant, A lower bound on the independence number of a graph, Discrete Math. 188 (1998) 239-243, doi: 10.1016/S0012-365X(98)00048-X. | Zbl 0958.05067
[008] [9] J. Harant, A. Pruchnewski, M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing 8 (1999) 547-553, doi: 10.1017/S0963548399004034. | Zbl 0959.05080
[009] [10] J. Harant, I. Schiermeyer, On the independence number of a graph in terms of order and size, submitted. | Zbl 1030.05091
[010] [11] T.S. Motzkin, E.G. Straus, Maxima for graphs and a new proof of a theorem of Turan, Canad. J. Math. 17 (1965) 533-540, doi: 10.4153/CJM-1965-053-6. | Zbl 0129.39902
[011] [12] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. 90 (1991) 207-211, doi: 10.1016/0012-365X(91)90357-8. | Zbl 0755.05055
[012] [13] S.M. Selkow, The independence number of graphs in terms of degrees, Discrete Math. 122 (1993) 343-348, doi: 10.1016/0012-365X(93)90307-F. | Zbl 0791.05062
[013] [14] S.M. Selkow, A probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363-365, doi: 10.1016/0012-365X(93)00102-B. | Zbl 0810.05039
[014] [15] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83-87, doi: 10.1016/0012-365X(83)90273-X. | Zbl 0516.05053
[015] [16] J.B. Shearer, A note on the independence number of triangle-free graphs, II, J. Combin. Theory (B) 53 (1991) 300-307, doi: 10.1016/0095-8956(91)90080-4. | Zbl 0753.05074
[016] [17] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).