The strong isometric dimension of finite reflexive graphs
Shannon L. Fitzpatrick ; Richard J. Nowakowski
Discussiones Mathematicae Graph Theory, Tome 20 (2000), p. 23-38 / Harvested from The Polish Digital Mathematics Library

The strong isometric dimension of a reflexive graph is related to its injective hull: both deal with embedding reflexive graphs in the strong product of paths. We give several upper and lower bounds for the strong isometric dimension of general graphs; the exact strong isometric dimension for cycles and hypercubes; and the isometric dimension for trees is found to within a factor of two.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:270276
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1104,
     author = {Shannon L. Fitzpatrick and Richard J. Nowakowski},
     title = {The strong isometric dimension of finite reflexive graphs},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {20},
     year = {2000},
     pages = {23-38},
     zbl = {0966.05026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1104}
}
Shannon L. Fitzpatrick; Richard J. Nowakowski. The strong isometric dimension of finite reflexive graphs. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 23-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1104/

[000] [1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984) 1-12. MR 85f:90124.

[001] [2] T. Andreae, On a pursuit game played on graphs for which the minor is excluded, J. Combin. Theory (B) 41 (1986) 37-47. MR 87i:05179. | Zbl 0641.90110

[002] [3] G. Chartrand and L. Lesniak, Graphs and Digraphs (second edition, Wadsworth, 1986). | Zbl 0666.05001

[003] [4] S.L. Fitzpatrick, A polynomial-time algorithm for determining if idim(G) ≤ 2,preprint 1998.

[004] [5] S.L. Fitzpatrick and R.J. Nowakowski, Copnumber of graphs with strong isometric dimension two, to appear in Ars Combinatoria. | Zbl 1066.05118

[005] [6] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65-76. MR 32#431. | Zbl 0151.30205

[006] [7] E.M. Jawhari, D. Misane and M. Pouzet, Retracts: graphs and ordered sets from the metric point of view, Contemp. Math. 57 (1986) 175-226. MR 88i:54022. | Zbl 0597.54028

[007] [8] E.M. Jawhari, M. Pouzet and I. Rival, A classification of reflexive graphs: the use of 'holes', Canad. J. Math. 38 (1986) 1299-1328. MR 88j:05038.

[008] [9] S. Neufeld, The Game of Cops and Robber, M.Sc Thesis, Dalhousie University, 1990.

[009] [10] R. Nowakowski and I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223-234. MR 84k:05057.

[010] [11] R. Nowakowski and I. Rival, A fixed edge theorem for graphs with loops, J. Graph Theory 3 (1979) 339-350. MR 80j:05098.

[011] [12] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239. MR 84d:05138. | Zbl 0508.05058

[012] [13] E. Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585-598. MR 89g:05102 | Zbl 0649.05050

[013] [14] A. Quilliot, These d'Etat (Université de Paris VI, 1983).

[014] [15] P. Winkler, The metric structure of graphs: theory and applications (London Math. Soc. Lecture Note Ser., 123, Cambridge Univ. Press, Cambridge-New York, 1987). MR 88h:05090. | Zbl 0624.05042