The strong isometric dimension of a reflexive graph is related to its injective hull: both deal with embedding reflexive graphs in the strong product of paths. We give several upper and lower bounds for the strong isometric dimension of general graphs; the exact strong isometric dimension for cycles and hypercubes; and the isometric dimension for trees is found to within a factor of two.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1104, author = {Shannon L. Fitzpatrick and Richard J. Nowakowski}, title = {The strong isometric dimension of finite reflexive graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {20}, year = {2000}, pages = {23-38}, zbl = {0966.05026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1104} }
Shannon L. Fitzpatrick; Richard J. Nowakowski. The strong isometric dimension of finite reflexive graphs. Discussiones Mathematicae Graph Theory, Tome 20 (2000) pp. 23-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1104/
[000] [1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984) 1-12. MR 85f:90124.
[001] [2] T. Andreae, On a pursuit game played on graphs for which the minor is excluded, J. Combin. Theory (B) 41 (1986) 37-47. MR 87i:05179. | Zbl 0641.90110
[002] [3] G. Chartrand and L. Lesniak, Graphs and Digraphs (second edition, Wadsworth, 1986). | Zbl 0666.05001
[003] [4] S.L. Fitzpatrick, A polynomial-time algorithm for determining if idim(G) ≤ 2,preprint 1998.
[004] [5] S.L. Fitzpatrick and R.J. Nowakowski, Copnumber of graphs with strong isometric dimension two, to appear in Ars Combinatoria. | Zbl 1066.05118
[005] [6] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65-76. MR 32#431. | Zbl 0151.30205
[006] [7] E.M. Jawhari, D. Misane and M. Pouzet, Retracts: graphs and ordered sets from the metric point of view, Contemp. Math. 57 (1986) 175-226. MR 88i:54022. | Zbl 0597.54028
[007] [8] E.M. Jawhari, M. Pouzet and I. Rival, A classification of reflexive graphs: the use of 'holes', Canad. J. Math. 38 (1986) 1299-1328. MR 88j:05038.
[008] [9] S. Neufeld, The Game of Cops and Robber, M.Sc Thesis, Dalhousie University, 1990.
[009] [10] R. Nowakowski and I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223-234. MR 84k:05057.
[010] [11] R. Nowakowski and I. Rival, A fixed edge theorem for graphs with loops, J. Graph Theory 3 (1979) 339-350. MR 80j:05098.
[011] [12] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239. MR 84d:05138. | Zbl 0508.05058
[012] [13] E. Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585-598. MR 89g:05102 | Zbl 0649.05050
[013] [14] A. Quilliot, These d'Etat (Université de Paris VI, 1983).
[014] [15] P. Winkler, The metric structure of graphs: theory and applications (London Math. Soc. Lecture Note Ser., 123, Cambridge Univ. Press, Cambridge-New York, 1987). MR 88h:05090. | Zbl 0624.05042