Let ₁,₂ be additive hereditary properties of graphs. A (₁,₂)-decomposition of a graph G is a partition of E(G) into sets E₁, E₂ such that induced subgraph has the property , i = 1,2. Let us define a property ₁⊕₂ by G: G has a (₁,₂)-decomposition. A property D is said to be decomposable if there exists nontrivial additive hereditary properties ₁, ₂ such that D = ₁⊕₂. In this paper we determine the completeness of some decomposable properties and we characterize the decomposable properties of completeness 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1097, author = {Mariusz Ha\l uszczak and Pavol Vateha}, title = {On the completeness of decomposable properties of graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {19}, year = {1999}, pages = {229-236}, zbl = {0958.05112}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1097} }
Mariusz Hałuszczak; Pavol Vateha. On the completeness of decomposable properties of graphs. Discussiones Mathematicae Graph Theory, Tome 19 (1999) pp. 229-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1097/
[000] [1] L.W. Beineke, Decompositions of complete graphs into forests, Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9 (1964) 589-594. | Zbl 0137.18104
[001] [2] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026
[002] [3] M. Borowiecki and M. Hałuszczak, Decomposition of some classes of graphs, (manuscript).
[003] [4] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
[004] [5] S.A. Burr, J.A. Roberts, On Ramsey numbers for stars, Utilitas Math. 4 (1973) 217-220 | Zbl 0293.05119
[005] [6] G. Chartrand and L. Lesnak, Graphs and Digraphs (Wadsworth & Brooks/Cole, Monterey, California, 1986).
[006] [7] E.J. Cockayne, Colour classes for r-graphs, Canad. Math. Bull. 15 (1972) 349-354, doi: 10.4153/CMB-1972-063-2. | Zbl 0254.05106
[007] [8] P. Mihók Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki, Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.
[008] [9] P. Mihók and G. Semanišin, Generalized Ramsey Theory and Decomposable Properties of Graphs, (manuscript).
[009] [10] L. Volkmann, Fundamente der Graphentheorie (Springer, Wien, New York, 1996), doi: 10.1007/978-3-7091-9449-2.