Note on cyclic decompositions of complete bipartite graphs into cubes
Dalibor Fronček
Discussiones Mathematicae Graph Theory, Tome 19 (1999), p. 219-227 / Harvested from The Polish Digital Mathematics Library

So far, the smallest complete bipartite graph which was known to have a cyclic decomposition into cubes Qd of a given dimension d was Kd2d-1,d2d-2. We improve this result and show that also Kd2d-2,d2d-2 allows a cyclic decomposition into Qd. We also present a cyclic factorization of K8,8 into Q₄.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:270319
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1096,
     author = {Dalibor Fron\v cek},
     title = {Note on cyclic decompositions of complete bipartite graphs into cubes},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {19},
     year = {1999},
     pages = {219-227},
     zbl = {0958.05110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1096}
}
Dalibor Fronček. Note on cyclic decompositions of complete bipartite graphs into cubes. Discussiones Mathematicae Graph Theory, Tome 19 (1999) pp. 219-227. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1096/

[000] [1] S. El-Zanati and C. Vanden Eynden, Decompositions of K_{m,n} into cubes, J. Comb. Designs 4 (1) (1996) 51-57, doi: 10.1002/(SICI)1520-6610(1996)4:1<51::AID-JCD5>3.0.CO;2-Z | Zbl 0913.05080

[001] [2] A. Rosa, On certain valuations of the vertices of a graph, Internat. Sympos. ICC Rome, Dunod, Paris, 1967, 349-355.

[002] [3] C. Vanden Eynden, Decompositions of complete bipartite graphs, Ars Combinatoria, to appear.