We consider the problem of the existence of uniquely partitionable planar graphs. We survey some recent results and we prove the nonexistence of uniquely (𝓓₁,𝓓₁)-partitionable planar graphs with respect to the property 𝓓₁ "to be a forest".
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1092, author = {Mieczys\l aw Borowiecki and Peter Mih\'ok and Zsolt Tuza and M. Voigt}, title = {Remarks on the existence of uniquely partitionable planar graphs}, journal = {Discussiones Mathematicae Graph Theory}, volume = {19}, year = {1999}, pages = {159-166}, zbl = {0958.05118}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1092} }
Mieczysław Borowiecki; Peter Mihók; Zsolt Tuza; M. Voigt. Remarks on the existence of uniquely partitionable planar graphs. Discussiones Mathematicae Graph Theory, Tome 19 (1999) pp. 159-166. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1092/
[000] [1] C. Bazgan, M. Santha and Zs. Tuza, On the approximation of finding a(nother) Hamiltonian cycle in cubic Hamiltonian graphs, in: Proc. STACS'98, Lecture Notes in Computer Science 1373 (Springer-Verlag, 1998) 276-286. Extended version in the J. Algorithms 31 (1999) 249-268.
[001] [2] C. Berge, Theorie des Graphes, Paris, 1958.
[002] [3] C. Berge, Graphs and Hypergraphs, North-Holland, 1973.
[003] [4] B. Bollobás and A.G. Thomason, Uniquely partitionable graphs, J. London Math. Soc. 16 (1977) 403-410, doi: 10.1112/jlms/s2-16.3.403. | Zbl 0377.05038
[004] [5] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. | Zbl 0902.05026
[005] [6] I. Broere and J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mountains 18 (1999) 79-87. | Zbl 0951.05034
[006] [7] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043. | Zbl 0906.05057
[007] [8] J. Bucko and J. Ivanco, Uniquely partitionable planar graphs with respect to properties having a forbidden tree, Discuss. Math. Graph Theory 19 (1999) 71-78, doi: 10.7151/dmgt.1086. | Zbl 0944.05080
[008] [9] J. Bucko, P. Mihók and M. Voigt Uniquely partitionable planar graphs, Discrete Math. 191 (1998) 149-158, doi: 10.1016/S0012-365X(98)00102-2. | Zbl 0957.05029
[009] [10] G. Chartrand and J.P. Geller, Uniquely colourable planar graphs, J. Combin. Theory 6 (1969) 271-278, doi: 10.1016/S0021-9800(69)80087-6. | Zbl 0175.50206
[010] [11] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colourable graphs, J. Combin. Theory 6 (1969) 264-270; MR39#99. | Zbl 0175.50205
[011] [12] P. Mihók, Reducible properties and uniquely partitionable graphs, in: Contemporary Trends in Discrete Mathematics, From DIMACS and Dimatia to the Future, Proceedings of the DIMATIA-DIMACS Conference, Stirin May 1997, Ed. R.L. Graham, J. Kratochvil, J. Ne setril, F.S. Roberts, DIMACS Series in Discrete Mathematics, Volume 49, AMS, 213-218.
[012] [13] P. Mihók, G. Semanišin and R. Vasky, Hereditary additive properties are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000)44-53, doi: 10.1002/(SICI)1097-0118(200001)33:1<44::AID-JGT5>3.0.CO;2-O | Zbl 0942.05056
[013] [14] J. Mitchem, Uniquely k-arborable graphs, Israel J. Math. 10 (1971) 17-25; MR46#81. | Zbl 0224.05105