Uniquely partitionable planar graphs with respect to properties having a forbidden tree
Jozef Bucko ; Jaroslav Ivančo
Discussiones Mathematicae Graph Theory, Tome 19 (1999), p. 71-78 / Harvested from The Polish Digital Mathematics Library

Let ₁, ₂ be graph properties. A vertex (₁,₂)-partition of a graph G is a partition V₁,V₂ of V(G) such that for i = 1,2 the induced subgraph G[Vi] has the property i. A property ℜ = ₁∘₂ is defined to be the set of all graphs having a vertex (₁,₂)-partition. A graph G ∈ ₁∘₂ is said to be uniquely (₁,₂)-partitionable if G has exactly one vertex (₁,₂)-partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:270406
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1086,
     author = {Jozef Bucko and Jaroslav Ivan\v co},
     title = {Uniquely partitionable planar graphs with respect to properties having a forbidden tree},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {19},
     year = {1999},
     pages = {71-78},
     zbl = {0944.05080},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1086}
}
Jozef Bucko; Jaroslav Ivančo. Uniquely partitionable planar graphs with respect to properties having a forbidden tree. Discussiones Mathematicae Graph Theory, Tome 19 (1999) pp. 71-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1086/

[000] [1] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043. | Zbl 0906.05057

[001] [2] J. Bucko, P. Mihók and M. Voigt, Uniquely partitionable planar graphs, Discrete Math. 191 (1998) 149-158, doi: 10.1016/S0012-365X(98)00102-2. | Zbl 0957.05029

[002] [3] M. Borowiecki, J. Bucko, P. Mihók, Z. Tuza and M. Voigt, Remarks on the existence of uniquely partitionable planar graphs, 13. Workshop on Discrete Optimization, Burg, abstract, 1998.

[003] [4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043