Let ₁, ₂ be graph properties. A vertex (₁,₂)-partition of a graph G is a partition V₁,V₂ of V(G) such that for i = 1,2 the induced subgraph has the property . A property ℜ = ₁∘₂ is defined to be the set of all graphs having a vertex (₁,₂)-partition. A graph G ∈ ₁∘₂ is said to be uniquely (₁,₂)-partitionable if G has exactly one vertex (₁,₂)-partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1086, author = {Jozef Bucko and Jaroslav Ivan\v co}, title = {Uniquely partitionable planar graphs with respect to properties having a forbidden tree}, journal = {Discussiones Mathematicae Graph Theory}, volume = {19}, year = {1999}, pages = {71-78}, zbl = {0944.05080}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1086} }
Jozef Bucko; Jaroslav Ivančo. Uniquely partitionable planar graphs with respect to properties having a forbidden tree. Discussiones Mathematicae Graph Theory, Tome 19 (1999) pp. 71-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1086/
[000] [1] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043. | Zbl 0906.05057
[001] [2] J. Bucko, P. Mihók and M. Voigt, Uniquely partitionable planar graphs, Discrete Math. 191 (1998) 149-158, doi: 10.1016/S0012-365X(98)00102-2. | Zbl 0957.05029
[002] [3] M. Borowiecki, J. Bucko, P. Mihók, Z. Tuza and M. Voigt, Remarks on the existence of uniquely partitionable planar graphs, 13. Workshop on Discrete Optimization, Burg, abstract, 1998.
[003] [4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58. | Zbl 0623.05043