Cyclically 5-edge connected non-bicritical critical snarks
Stefan Grünewald ; Eckhard Steffen
Discussiones Mathematicae Graph Theory, Tome 19 (1999), p. 5-11 / Harvested from The Polish Digital Mathematics Library

Snarks are bridgeless cubic graphs with chromatic index χ' = 4. A snark G is called critical if χ'(G-{v,w}) = 3, for any two adjacent vertices v and w. For any k ≥ 2 we construct cyclically 5-edge connected critical snarks G having an independent set I of at least k vertices such that χ'(G-I) = 4. For k = 2 this solves a problem of Nedela and Skoviera [6].

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:270551
@article{bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1081,
     author = {Stefan Gr\"unewald and Eckhard Steffen},
     title = {Cyclically 5-edge connected non-bicritical critical snarks},
     journal = {Discussiones Mathematicae Graph Theory},
     volume = {19},
     year = {1999},
     pages = {5-11},
     zbl = {0931.05034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1081}
}
Stefan Grünewald; Eckhard Steffen. Cyclically 5-edge connected non-bicritical critical snarks. Discussiones Mathematicae Graph Theory, Tome 19 (1999) pp. 5-11. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1081/

[000] [1] D. Blanusa, Problem ceteriju boja (The problem of four colors), Hrvatsko Prirodoslovno Drustvo Glasnik Math.-Fiz. Astr. Ser. II, 1 (1946) 31-42.

[001] [2] G. Brinkmann and E. Steffen, Snarks and Reducibility, Ars Combin. 50 (1998) 292-296.

[002] [3] P.J. Cameron, A.G. Chetwynd and J.J. Watkins, Decomposition of Snarks,J. Graph Theory 11 (1987) 13-19, doi: 10.1002/jgt.3190110104. | Zbl 0612.05030

[003] [4] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory (B) 31 (1981) 282-291, doi: 10.1016/0095-8956(81)90030-7. | Zbl 0449.05037

[004] [5] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844. | Zbl 0311.05109

[005] [6] R. Nedela and M. Skoviera, Decompositions and Reductions of Snarks, J. Graph Theory 22 (1996) 253-279, doi: 10.1002/(SICI)1097-0118(199607)22:3<253::AID-JGT6>3.0.CO;2-L | Zbl 0856.05082

[006] [7] M. Preissmann, C-minimal Snarks, Annals Discrete Math. 17 (1983) 559-565. | Zbl 0523.05060

[007] [8] M. Skoviera, personal communication.

[008] [9] E. Steffen, Critical Non-bicritical Snarks, Graphs and Combinatorics (to appear). | Zbl 0939.05071

[009] [10] E. Steffen, Classifications and Characterizations of Snarks, Discrete Math. 188 (1998) 183-203, doi: 10.1016/S0012-365X(97)00255-0. | Zbl 0956.05089

[010] [11] E. Steffen, On bicritical Snarks, Math. Slovaca (to appear). | Zbl 0985.05022

[011] [12] J.J. Watkins, Snarks, Ann. New York Acad. Sci. 576 (1989) 606-622, doi: 10.1111/j.1749-6632.1989.tb16441.x.

[012] [13] J.J. Watkins, R.J. Wilson, A Survey of Snarks, in: Y. Alavi et al. (eds.), Graph Theory, Combinatorics and Applications (Wiley, New York, 1991) 1129-1144. | Zbl 0841.05035